Reproduce: Unsupervised Video Summarization Framework Using Keyframe Extraction and Video Skimming
In this project we use both keyframe extraction and video skimming for video summarization. For static keyframe extraction, we extract low level features using uniform sampling, image histograms, SIFT and image features from Convolutional Neural Network (CNN) trained on ImageNet. We also use different clustering methods including K-means and Gaussian clustering. We use video skims around the selected keyframes to make the summary fore fluid and comprehensible for humans. We take inspiration from the VSUMM method which is a prominent method in video summarization.
Launching this artifact will open it within Chameleon’s shared Jupyter experiment environment, which is accessible to all Chameleon users with an active allocation.
Download ArchiveDownload an archive containing the files of this artifact.
Download with git
Clone the git repository for this artifact, and checkout the version's commit
git clone https://github.com/amalia13977/repro_jasim.git
# cd into the created directory
git checkout 7efb2328c8be3b4b01c73b51eccebeca73add88d
Submit feedback through GitHub issues