Ad hoc Cloud-based Computing Clusters for Big Data Processing

Abdelmounaam Rezgui
rezgui@cs.nmt.edu
Description of Research

• **Research Area**
 – Volunteer Cloud Computing to Support Big Data Science

• **Research Problem**
 – Build efficient, distributed cloud “clusters” on-the-fly to support big data processing
Research Questions

• Can a computing cluster be dynamically composed from donated cloud-based resources to run a specific big data workload?

• if the answer is yes, how can we speed up big data workloads by interleaving the processes of cluster formation, data loading and data processing?
Why is it important?

• Enable big data science over volunteered cloud computing resources.

• Lower the entry barrier to big data processing so that scientists may conduct big data research without making huge investments.
Challenges

• Availability of volunteered resources is **unpredictable**.

• Large number of **alternatives**

• How to dynamically build an **optimal cluster** taking into account:
 – The specific big data application
 – The user’s location
 – The location of the donated resources
Experiment 1

• **Optimal cluster dimensioning**

 – Manually build distributed cloud clusters on the testbed

 – Compare their performance with what the optimization framework suggests in terms of cluster size (number of nodes) and topology (locations of nodes).
Experiment 2

• **Prediction of the cost of the dynamic creation of big data processing clusters**

 – **Purpose**: Assess the accuracy of our model for predicting the time needed to set up a computing cluster for a given big data workload.

 – Run code that automatically builds a cluster of (possibly geographically distant) computing nodes

 – Measure the time needed before the cluster is entirely functioning and ready to run the given big data workload.
Experiment 3

• **Determining the best choreography**

• **Three tasks:**
 – cluster formation,
 – data loading, and
 – data processing

• **Purpose:** determine which interleaving scheme is the best.
Capabilities 1

- **Application Programming Interface**
 - **create** a computing cluster with a given size and/or given topology,
 - **select specific sites** for nodes
 - dynamically **resize** a cluster,
 - **transfer data** to and from nodes

- **Automatic Virtual Machine Deployment**
 - configure a VM according to requirements of experiment
 - automatically (possibly concurrently) deploy it on one or more of the testbed’s nodes.
Capabilities 2

• **Location**
 – expose the geographical location of cluster’s nodes to users

• **Transparent Fault Tolerance**
 – Failures should be transparent to applications and experiments

• **Reproducibility**
 – Accurately reproduce the same conditions that characterized the execution of a given script.
 – This would make it meaningful to compare the results of two executions of the same script.