
Chameleon: A Large-Scale, Deeply Reconfigurable Testbed for Computer Science
Research

Kate Keahey∗, Joe Mambretti†, Paul Ruth‡ and Dan Stanzione§
∗Argonne National Laboratory, Lemont, IL

Email: keahey@anl.gov
†Northwestern University, Evanston, IL
Email: j-mambretti@northwestern.edu

‡Renaissance Computing Institute, Chapel Hill, NC
Email: pruth@renci.org

§Texas Advanced Computing Center, Austin, TX
Email: dan@tacc.utexas.edu

Computer Science experimental testbeds allow investi-
gators to explore a broad range of different state-of-the-
art hardware options, assess scalability of their systems,
and provide conditions that allow deep reconfigurability
and isolation so that one user does not impact the exper-
iments of another. An experimental testbed is also in a
unique position to support methods facilitating experiment
analysis and improve repeatability and reproducibility of
experiments. Providing these capabilities at least partially
within a commodity framework improves the sustainability
of systems experiments and thus makes them available to a
broader range of experimenters.

Chameleon [1] is an open, large-scale, deeply recon-
figurable testbed built specifically to support the features
described above. The project began in 2014 and became
publicly available in July 2015. To date, the testbed has
supported 3,000+ users working on 500+ research and
education projects. Community projects range from systems
research developing new operating systems, virtualization
methods, performance variability studies, and power man-
agement research to projects in software defined networking,
artificial intelligence, and resource management.

Experiments of this type, cannot be supported by sub-
mitting jobs to batch schedulers. To cover the broadest
possible range of experimental requirements, Chameleon
supports a reconfigurable bare-metal system giving users
full control of the software stack including root privileges,
kernel customization, console access, as well as the abil-
ity to experiment with software defined networking using
innovative features such as the Bring-Your-Own-Controller
(BYOC) functionality [2, 3]. While most testbed resources
are configured with Chameleon Infrastructure (CHI) which
provides this type of user access and control, a small part
of the system is configured as a virtualized KVM cloud to
balance the need for finer-grained resource sharing sufficient
for some projects, with coarse-grained and stronger isolation

properties of bare metal.
Chameleon hardware balances the need to support experi-

ments at scale with the need for diversity. The need for scale
is satisfied by a large-scale homogeneous partition of nearly
15,000 cores, 5PB of total disk space, hosted across two sites
connected by 100 Gbps network, the University of Chicago
and the Texas Advanced Computing Center (TACC). The
diversity of hardware configurations and architectures is
reflected by support for innovative networking solutions
including SDN-enabled Corsa switches and Infiniband sup-
port, accelerators such as FPGAs and a range of different
GPU technologies, nodes with storage hierarchies containing
a mix of large RAM, non-volatile memory, SSDs, and
HDDs, a diversity x86 technologies, as well as support for
non-x86 architectures such as ARMs.

Unlike traditional Computer Science experimental sys-
tems which have overwhelmingly been configured by tech-
nologies developed in-house, Chameleon adapted Open-
Stack, a mainstream open source cloud technology, to pro-
vide its capabilities. This has a range of practical benefits in-
cluding familiar interfaces for users and operators, workforce
development potential, leverage of contributions from a large
development community, and the potential to contribute to
infrastructure used by millions of users worldwide. The
Chameleon team leveraged the latter opportunity in partic-
ular, by contributing to OpenStack the Blazar component
that implements management of allocatable resources [4] via
advance reservations. The most commonly used allocatable
resources are compute nodes, but can also include networks,
IP addresses, and can be extended to support other resources
such as IoT devices. Since September 2017 the Blazar
service has now been recognized as one of the OpenStack
top level components. Beyond practical benefits, configuring
an experimental platform as a cloud also provides a direct
answer in the debate of whether Computer Science systems
research can be supported on clouds. It is also a convenient
means of influencing that debate through direct mainstream

U.S. Government work not protected by U.S. copyright



contributions such as the one described above.
While OpenStack is an open source system, customizing,

extending, and augmenting it so that it presents a complete
and viable platform for Computer Science experimentation
requires additional work. Over the years of managing the
system we have also developed many tools that make the
operation of Chameleon easier and more cost-effective,
automating problem discovery and repair [5]. The holistic
system is called CHameleon Infrastructure (CHI) and can
be packaged and shared with others intending to operate ex-
perimental testbeds. Our approach to packaging Chameleon
is called CHI-in-a-Box and addresses three scenarios: (1)
independent testbed, where a provider wants to configure a
new, potentially private, testbed independent of Chameleon,
(2) Chameleon Associate Site, i.e., a site that directly
contributes resources to the Chameleon testbed, and (3) Part-
Time Associate, for cases where a site contributes resources
to Chameleon on a part-time only basis. The Chameleon
team will provide limited operational support and full user
support to partners participating as Associate Site and Part-
Time Associate making it a good option for providers who
want to provide their resources to a wide user base. To
date one site, at the Northwestern University, has joined
Chameleon as an Associate Site and two others are exploring
using CHI-in-a-Box as independent sites.

Although the primary purpose of open testbeds is to
provide resources to users who would not be able to satisfy
their experimental needs otherwise, an important side-effect
is that multiple users and user groups have access to the
same resources, that are compatible with the same experi-
mental artifacts, such as appliances/images or orchestration
templates. This creates conditions which allow users to
share experiments and replicate each other’s work more
easily and creates an opportunity to foster good experimental
practices as well as create a sharing ecosystem. To facilitate
the creation of such ecosystem we have developed two
mechanisms that we call, respectively, reproducibility by
side-effect, and reproducibility by default.

Reproducibility by side-effect is intended to aid users in
much the same the Linux “history” command allows you to
see what commands you typed while working on a problem.
Similarly in a testbed, we often need to refresh our mem-
ory on the exact configuration, conditions, or steps taken
in the conduct of an experiment. Chameleons Experiment
Précis [6] captures all the distributed events generated in
a testbed by a user, and presents them with a summary (a
précis) of an experiment; the user can then filter or preview
the events to include only the relevant ones, thus working
with an accurate and impartial record of their work. The
précis can be further used to generate a description of the
experiment in English or potentially a set of experimental
artifacts - images, orchestration templates, or commands -
that will reproduce the experiment.

Searching for the best expression of an experiment led

us to experiment with notebooks which combine ideas in
the form of text, with the experimental process expressed
as code and results expressed as data processing. Using
notebooks, users can develop their experiments step by
step; as each step is configurable and the notebooks can be
shared, each represents a convenient vehicle for repeating
and replicating an experiment. To facilitate the use of note-
books we integrated Jupyter with Chameleon by providing a
JupyterHub server for our users. We also integrated python
and bash libraries that capture the interface to the testbed.
While notebook code is generally limited to executing in
limited containers (such as Docker ), with this integration,
Chameleon users can define arbitrarily complex contain-
ers/environments powered by the testbed - and then use them
from their Jupyter notebooks to run complex experiments.
The integration thus combines the flexibility of notebooks
with the power of experimental testbeds and allows us to
make our user’s work more efficient.

ACKNOWLEDGMENT

These results were supported by the NSF awards 1419141
and 1743358 and, in part, by the U.S. DOE, Office of
Science, contract number DE-AC02-06CH11357.

REFERENCES

[1] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill,
J. Mambretti, P. Rad, and P. Ruth, “Chameleon: a Scalable
Production Testbed for Computer Science Research,” in
Contemporary High Performance Computing: From Petascale
toward Exascale, 1st ed., ser. Chapman Hall/CRC
Computational Science, J. Vetter, Ed. Boca Raton, FL: CRC
Press, May 2019, vol. 3, ch. 5, pp. 123–148.

[2] P. Ruth, M. Cevik, K. Keahey, and P. Riteau, “Wide-area
Software Defined Networking Experiments using
Chameleon,” in Proceedings of the IEEE Conference on
Computer and Networking Experimental Research using
Testbeds (CNERT 2019). IEEE Press, 2019.

[3] D. Bhat, J. Anderson, P. Ruth, M. Zink, and K. Keahey,
“Application-based QoE Support with P4 and OpenFlow,” in
Proceedings of the IEEE Conference on Computer and
Networking Experimental Research using Testbeds (CNERT
2019). IEEE Press, 2019.

[4] K. Keahey, P. Riteau, J. Anderson, and Z. Zhen, “Managing
Allocatable Resources,” in Proceedings of The IEEE
International Conference on Cloud Computing (CLOUD
2019). IEEE Press, 2019.

[5] K. Keahey, J. Anderson, P. Ruth, J. Colleran, C. Hammock,
J. Stubbs, and Z. Zhen, “Operational Lessons from
Chameleon,” in Proceedings of the Humanware Advancing
Research in the Cloud (HARC’19) at PEARC’19. ACM,
2019.

[6] S. Wang, Z. Zhen, J. Anderson, and K. Keahey,
“Reproducibility as Side Effect,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’18 Poster). IEEE
Press, 2018.


