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Virtual Science Networks: the vision 
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Deep network programmability
• Routing control
• Security monitoring / NFV
• Dynamic peering
• Topology adaptation
• Elastic edge clouds

Idea: Use circuits to create a 
private network provisioned to 
link multiple resources/subnets.
Super-facility

• Cross-campus collaborations
• Facility access
• Examples: cluster, LCF, testbed
• Resource sharing
• Virtual data enclaves
• Live network services

Campus

LCF site

Testbed slice



Foundation: network circuit fabrics
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• Bandwidth-provisioned raw L2 pipes
• Dynamic on demand: edge to edge
• Programmatic hands-free IaaS APIs 

OSCARSàOESSàNSI

Campus A

Science resources
in managed subnets

Campus BCircuit provider



Security-managed virtual networks
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In-network security
• Out-of-band monitoring
• Example: Bro IPS
• Threat-aware scanning
• Responsive traffic control

This is a live, autonomous virtual 
network service for a particular 
research community, with 
multiple attached customer 
domains.

Edge security policies:
• Peering access control
• IP prefix ownership (“RPKI”)
• Routing authority (“BGPSEC”)
• Customer connectivity policies



Overview: vision and approach
Build an architecture and platform for:
• Built-to-order virtual science networks
• An application of virtual Network Service Providers (vNSPs)
• Subnet-to-subnet fast-path connectivity across campus boundaries
• Security management with declarative policy, e.g., for virtual data enclaves

Elements of approach:
• SAFE logical trust system: logic certificates and policy rules
• Leverage national research fabrics and NSF-funded CI.
• Use GENI resources (for now) for vNSP routing and security.
• Specifically: built-to-order virtual network slices on ExoGENI



Elastic slice controllers: Ahab 
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Slice with virtual 
topology

§ Ahab controller architecture
§ Provision VMs and pipes 
§ Instantiate slice and adapt the slice over time



Stitching to Chameleon
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ExoPlex platform
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Chameleon experiment: vSDX
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Bro

Dynamic Virtual Network
ovsovs

Ø Virtual SDX
§ Distributed: many points of presence to attach customers  
§ Elastic backplane: allocate/release network resources dynamically



Example vNSP: vSDX

§ Clients: 2 Chameleon slices, 2 ExoGENI Slices

10

Chameleon 
Slices vSDX

Secure Ingress Service

ExoGENI 
Slices

1 Gbps

1 Gbps

1 Gbps

1 Gbps
2 Gbps

2 Gbps 2 Gbps

 

 

 

 

Bro

Dynamic Virtual Network
ovsovs



Example vNSP: vSDX

§ Large file transfer
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Example vNSP: vSDX

§ Attack: red flow sends a malicious file with a known signature
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Example vNSP: vSDX
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§ Bro detects malicious files
§ vSDX actuates disconnection of the red flow



Results: Performance under load
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Start dropping pkts

CPU saturated



Results: Elastic Bro deployment
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§ Scaling policies based on capacity and utilization
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