
Managing Allocatable Resources
(Invited Paper)

Kate Keahey∗, Pierre Riteau†, Jason Anderson‡ and Zhuo Zhen‡
∗Mathematics and Computer Science Division

Argonne National Laboratory, Lemont, IL 60439
Email: keahey@anl.gov

†StackHPC Ltd, Bristol, UK
Email: pierre@stackhpc.com

‡University of Chicago, Chicago, IL
Emails: jasonanderson,zhenz@uchicago.edu

Abstract—Infrastructure cloud computing allows its clients
to allocate on-demand resources, typically consisting of a repre-
sentation of a compute node. In general however, there is a need
for allocating resources other than nodes and managing them
in more controlled ways than simply on demand. This paper
generalizes the familiar “compute power on demand” pattern
by introducing the abstraction of an allocatable resource,
describing its properties, and implementation for different
types of resources. We further describe architecture for a
generic allocatable resource management service that can be
extended to manage diverse types of resources as well as the
implementation of this architecture in the OpenStack Blazar
service to manage resources ranging from bare-metal compute
nodes to network segments. Finally, we provide a usage analysis
of this service on the Chameleon testbed and use it to illustrate
the effectiveness of resource management methods as well as
the need for incentives in usage arbitration.

Keywords-cloud computing, advanced reservation, allocat-
able resources, OpenStack Blazar

I. INTRODUCTION

Over the last decade or so, infrastructure Cloud comput-
ing [1] revolutionized how we think of resource procurement
by making available remote resources via isolated containers
for dynamic exclusive usage. Roughly the same time period
has seen the emergence of scalable (i.e., serving large
user communities) experimental systems like Grid’5000 [2],
GENI [3], Emulab [4], and FutureGrid [5]. These systems
implemented the concept of a scalable production testbed,
i.e., production services that provide and manage many tem-
porary “breakable environments”, composed of distributed
compute nodes, networks, and storage units, used for in-
dividual experimentation. In today’s cloud parlance, these
systems developed the concept of a “testbed as a service”:
while individual isolated testbeds are configured for experi-
mentation that may get out of hand, the services that yield
them are expected to be production quality. These testbeds
emphasized the need for interactive experimentation, as well
as co-scheduling of multiple resources of different kind, and
thus time controlled access to isolated resources.

The Chameleon testbed [6], [7] provides highly config-
urable access to large-scale resources. The hardware consists
of an investment in 15,000+ cores of homogeneous resources
(Intell Haswell nodes) to support large scale experimenta-
tion, along with smaller investment in diversity including
GPUs, FPGAs, storage-rich deployments, as weall as a range
of different architectures. These resources are spread over
two sites, University of Chicago and TACC, connected with
100G network. Users allocate them individually or in large
and complex ensembles and can reconfigure them at bare
metal level, boot from custom kernel if needed, or get access
to serial console. By basing its infrastructure largely on
OpenStack [8], a commodity open source Infrastructure-
as-a-Service implementation, Chameleon demonstrated that
mainstream cloud technology can be used for support-
ing Computer Science systems experimentation. At the
same time, Chameleon extended the concepts underlying
infrastructure clouds by systematizing the concept of an
allocatable resource, extending it beyond handling node
reservations to encompass other resources, and emphasized
generalized time management of cloud resources in support
of interactive and co-scheduled resource use, critical in
experimentation.

In this paper, we introduce the concept of an allocatable
resource as entity defining isolation and thus potential for
exclusive usage on cloud resources; we discuss its properties
and implementation for different types of resources. We then
describe an architecture for a generic allocatable resources
management service, as well as its implementation as the
OpenStack Blazar [9] service (originally called Climate,
since its inception in 2013 until mid-2014) which has
been accepted as a top level OpenStack component since
the fall of 2017. Blazar’s implementation is adaptable to
the management of diverse resources so that the service
can be used in configurable setting both in conjunction
with other OpenStack components (such as Nova [10] and
Neutron [11]), and on its own by developing independent
plugins for resources managed by services outside of Open-
Stack. Finally, we analyze our experiences with allocatable



resources on Chameleon demonstrating the value of advance
reservations where resources are supply-constrained as well
as the importance of incentives for their management.

This paper is organized as follows. In Section 2 we
introduce the concept of allocatable resource and discuss its
properties. In Section 3 we describe the architecture for a
generic allocatable resources management service followed
by a discussion of implementation of the Blazar OpenStack
service in Section 4. In Section 5 we provide insights gained
from allocatable resource usage on Chameleon. We describe
related work in Section 6 and conclude.

II. ALLOCATABLE RESOURCES

We define an allocatable resource as a well-defined object
within a system that the system’s clients can automatically
allocate for exclusive, metered usage, delimited by well-
defined time events. We will call the temporary exclusive
ownership of such resources a lease. Leases can be atomic
(associated with one resource only) or complex (associated
with multiple resources).

We discuss below the properties of allocatable resources:
Well-defined: It is essential that the description of an

allocatable resource can distinguish between any resources
that can be considered different within the system. For ex-
ample, if a cloud instance maps to multiple architectures, the
instance itself is an allocatable resource but its deployment
on a particular architecture is not. The allocatable resource
description is different than descriptions that a client may
input while interacting with the system which could be
expressed in terms of constraint such as “node with memory
of at least 2GB per core”; in this case, generality simply
facilitates interactions, ultimately resolving the generic de-
scription to a specific allocatable resource mapping. This is
particularly important in systems supporting experimentation
where claims are made in the context of a well-defined
model.

Exclusive usage: This property implies the ability to
define a unit of isolation between users. Historically, roughly
two definitions of this isolation were considered useful:
system isolation, which presents to the user an independent
system, and performance isolation which ensures that the
allocatable resources present consistent performance. One of
the most enabling examples of system isolation are virtual
machines (VMs) [12] which emulate an individual computer
system. Containers [13–15], similarly provide system isola-
tion though of a lesser degree (e.g., unlike VMs containers
may share a kernel). The GENI project defined the concept
of a slice [16] which encompasses a set of connected L2
circuits and the compute resources connected to them and
thus defines an isolated networking environment. System
isolation does not necessarily provide performance isolation,
i.e. assurance that a system will be associated with a well
defined quantum of resource such as guaranteed bandwidth.
This is generally hard to provide in shared environments,

and thus systems that require it (e.g., platforms supporting
Computer Science experimentation) often resort to defin-
ing allocatable resources at coarse grain to avoid sharing.
For example, to provide performance isolation Chameleon
defines compute allocatable resources as physical nodes,
rather than parts of a node (which would provide finer-grain
sharing but is hard to implement). The implementation of
isolation is typically associated with a certain cost/overhead.
For example, hypervisor hosting VMs will require resources
to implement its function, or bare metal nodes have to be
restored to default state between users which imposes an
overhead on the length of a lease. Allocatable resource is
thus whatever remains after the overhead has been con-
sumed.

Time-bounded, metered, automatic allocation: Re-
sources are allocatable if their availability can be bounded by
well-defined time events. The most general implementation
of this functionality allows clients to select specific time
events between which their lease will take place; this is
often referred to as advance reservations [17]. We note
that on-demand availability is a special case of advance
reservations where the start time defaults to the time at which
the request is made. Resources are available only on an on-
availability basis [18], e.g., at a time that cannot be reliably
bounded or constrained by the client, are not allocatable by
a client (though they may be allocatable by the provider
as is the case in e.g., batch systems). The clients should
also be able to change the placement of those events in
time throughout the lifetime of a lease, whether inactive
or active (i.e., without or with allocated resources). The
usage thus described should be monitored, metered, and
potentially limited according to those measures; the most
common example of this is the specific dollar amounts that
users pay under different cost models in commercial clouds,
but also applies to allocations and policy constraints on
usage in clouds operated within non-monetary economies
such as academic clouds. Allocations that do not conform to
policy/metering requirements (such as a credit or allocation
limit) should not be admitted into the system. Finally, the
requirement for automatic allocation is essential to ensure
that a system managing allocatable resources will scale.

A desirable characteristic of a system managing allocat-
able resources is to provide an availability calendar: it allows
users to assess the availability of a resource at any given
time, though only an actual lease request can provide the
transactional guarantee of a resource availability. Still, unless
the transactional volume in a system is very high for a
specific type of resource, the availability calendar can be
an effective additional tool in resource management.

Of the properties described above, the isolation units are
typically set by a system designer who selects implemen-
tation suitable to the system’s objectives. Providing well-
defined descriptions of those isolation units and managing
them in a way that satisfies the remaining conditions is the



Figure 1. Architecture of allocatable resource management system

objective of an allocatable lease manager described in the
rest of this paper.

III. ARCHITECTURE

The architecture of an allocatable resources management
system consists of three components: (1) service inter-
faces together with a server that can interpret it, such as
e.g., HTTP-based API (Lease Interfaces), (2) functionality
generic to the management of all leases (Lease Manager),
and (3) functionality specific to the management of par-
ticular resources (Enactment/Resource Plugins), potentially
working with third-party services to implement their func-
tionality. We describe those components below and illustrate
relationships between them in Figure 1: one lease manager
can handle leases for multiple types of resources, each via a
collaboration with (possibly) third party enactment services.

A. Service Interfaces

An allocatable resource manager has to support two broad
categories of functions: (1) inventory management, allowing
system operators to populate and manage databases of
allocatable resources (such as physical nodes or floating IPs),
and (2) lease management, allowing clients of the service to
make and manage leases on those allocatable resources. We
describe them below in turn.

The inventory management is achieved via four basic
CRUD operations (create, read, update, and delete). The
create_resource operation will generally validate pro-
vided values, fetch information about the resource and create
a record in the table or database based on which resource
availability is managed. The show_resource_details
and list_resources functions respectively, return a
specific resource description or a list of all resource descrip-
tions of the same type. The update_resource allows for
modifications to the original resource descriptions. Finally,

the delete_resource operation deletes the represen-
tation of a resource in the table/database and makes it
unreservable.

create resource(values) → resource
show resource details(resource id) → resource
list resources() → list of resources
update resource(values) → resource
delete resource(resource id)

The second type of interface allows clients to create and
manage leases; the operations are as follows:

create lease(constraints) → lease
update lease(lease id, values) → lease
delete lease(lease id)
show lease details(lease id) → lease
list leases() → list of leases

The create_lease operation is called when a lease is
originally requested. The constraints argument may contain
both temporal constraints (start and end time) and resource
description. The resource description may include multiple
units of resources of different types (e.g., multiple nodes
of one type, a floating IP, and a VLAN) or provide a
partial description of a resource (e.g., “a node with at least
2GB per core”), or even be omitted if reasonable defaults
can be set (e.g., if the only allocatable resource type are
compute nodes it may default to the most common node
type); a lease is created if the constraints can be satisfied
based on the existing state of the system, a lease record is
persisted, and a lease ID is returned; otherwise the system
will return an error. Throughout the lease lifecycle, the
client can use the update_lease operation to update
a lease by changing its resource or temporal constraints
subject to resource availability and policies – or use the
show_lease_details and list_leases operations
to display relevant information.

While most reservations are terminated by the lease
manager when their end time comes around, some can be
terminated directly by the user using the delete_lease
operation (e.g., if the work is completed sooner than orig-
inally expected); both actions trigger a call to a resource
plugin operation implementing resource deallocation and
graceful shutdown.

B. Lease Manager

The lease manager component provides an interface to
resource and lease databases and/or tables, manages system
events (such as reservation start and stop), and calls out to
enactment plug-ins to allocate and deallocate resources for
active reservations. This component also provides constraints
management and lease monitoring throughout their lifecycle.



Resources in the inventory are stored in the resource
database as individual records. A resource record consists of
its unique ID, its type, and then a set of key/value metadata
pairs that describe the resource in more detail, e.g. a node
might store its rack position and CPU architecture, while a
VLAN might store its 802.1Q tag. Leases are stored in the
lease database as a lease record, with a unique ID, start time
and end time, and one or more reservation records consisting
of a resource type and the set of constraints specified by the
user for that resource type. It is important to persist the
original constraints so that additional resources satisfying
them may be substituted later, or so that the user may adjust
the constraints later. Separating the concept of a lease and
a resource reservation provides the flexibility for one lease
to cover multiple types of resources at the same time, e.g. a
user can reserve both a set of nodes and a public IP address
by simply associating resource records with a given lease’s
reservation record. In addition to the lease and reservation
records, a set of lease lifecycle event records representing
each phase of enactment (lease start, before lease end, lease
end) are stored for each lease.

The resource assignment on lease creation may be early
(final mapping to specific resources created at the time
of reservation) or late (final mapping to specific resources
created by the time the lease becomes active); the former
leads to a simpler implementation, the latter provides more
flexibility and dynamicity in optimizing assignments for
various queries and adapting to resource changes. In either
case at creation time the database query should return a
non-empty list of possible options satisfying the constraints
or the lease will not be accepted; it is thus important that
the resource database supports efficient querying over an
arbitrary set of key/value pairs (resource metadata).

Unless an iterative negotiation style interaction with the
client [17] is desired and supported, a selection function is
then applied to pick a specific option. Depending on the
timing of resource assignment this function may optimize
constraint management across leases or optimize administra-
tive processes. For example, in our original implementation
the selection function would pick the first item off the list;
this led to significant churn on nodes that the resource query
returned first and thus uneven hardware wear; we subse-
quently modified the selection function to pick a random
resource which resulted in more uniform assignments across
resources. In general, the selection function can be used to
optimize other qualities like power usage. Once a unique
resource is identified, records are persisted in the database
and a resource reservation ID is returned.

Lease management may involve management for either
adaptation or optimization. For example, the system may
dynamically monitor resource inventory for its health status.
Unhealthy resources are marked as such, and any leases that
contain that resource (active or pending) enter a special “de-
graded” state. Based on policies and configuration, the lease

manager may automatically try to fix the lease (both active
and pending) by finding another resource that matches the
original constraint stored in the database, by disassociating
the resource from the lease. If no replacement resources are
found, the lease remains in the degraded state.

The lifecycle events associated with a lease set up during
lease creation are periodically checked and triggered at
appropriate times. Most of the events delegate to resource
plugins described in the next section to implement resource-
specific functions. For example, once the reservation is ready
to start, an event is triggered that causes the manager to
call the internal on_start operation implemented by the
enactment plug-in; as a result of this action the reservation
status changes from pending to active.

C. Resource plugins

The Lease Manager handles only functionality related to
managing resource reservations and assumes that enactment,
i.e., a method for allowing reservation owners to access their
reserved resources while their reservation is active, is imple-
mented by resource-specific enactment services. The main
assumption we make about those services is that they can
separate reservable resources from a pool of (potentially) on-
demand resources, making them usable only when obtained
through the Lease Manager. For example, when including
floating IPs as an allocatable resource via our system, the
operators must ensure that reservable floating IPs are not
included in their subnet’s allocation pools, which prevents
them from being allocated to users directly via Neutron – but
then the Lease Manager, using privileged service credentials,
can call out to Neutron to allocate floating IPs into a specific
project (in this case the project owning the reservation) and
remove them from the project when requested (i.e. when the
reservation ends).

Enactment plugins allow the resource manager to support
leases for different types of cloud resources, managed by dif-
ferent services (e.g., compute resources managed by Open-
Stack Nova [10] and network resources by Neutron [11]).
To interface with these services, each resource type requires
resource-specific enactment plugins, ensuring separation of
concerns.

The create, update, and delete inventory management
operations as shown in Figure 1 contain an almost direct
pass through to their plugin implementation. They contain
either custom-made tools for generating resource meta-data
or interface with a service that holds that information (e.g.,
it might fetch compute host information from OpenStack
Nova or services configuring it for Nova). Especially when
adapting resource management services that were not orig-
inally implemented to work with reservation systems, this
part of the plugin may also implement a method separating
reservable resources from the main pool of on-demand
resources (managed by a service like Nova), making them
usable only when reserved. In an OpenStack installation this



would result in dividing the pool of nodes into reservable
nodes and nodes available via on-demand only as before.

While creating and updating leases is handled entirely as a
generic reservation, the allocatable resource manager plugins
implement functions dealing with allocating and deallocating
actual resources to a lease. Those operations are as follows:

on start(resource reservation id)
before end(resource reservation id)
on end(resource reservation id)
update reservation(resource reservation id, values)

The on_start and on_end functions are called respec-
tively when a reservation (lease of a specific resource) starts
and ends and handle resource allocation and deallocation.
In addition, on_end is also called when a lease is deleted,
to trigger the end of an active reservation or perform re-
quired cleanup for pending reservations. The before_end
function can trigger an action at a configurable time before
the end of a reservation. For example, it can be used to
snapshot instances running on compute hosts before they
are terminated at the end of their reservations.

While updating a pending reservation can be handled
entirely via generic service logistics implementation, once a
reservation becomes active (i.e., is associated with allocated
resources) updating a reservation may trigger a call to
a plugin update_reservation function (e.g. adding
more compute nodes to an existing reservation).

IV. IMPLEMENTATION

In the context of the Chameleon project we defined three
types of allocatable resources: heterogeneous bare metal
machines, isolated network segments (VLANs) and public
IP addresses on the Chameleon testbed [6]. The compute
nodes are well-described by the Chameleon Resource Dis-
covery [19], down to serial numbers of individual compo-
nents. We chose to provide bare metal nodes as allocatable
resources in order to provide both system and performance
isolation; the sole ownership of the node ensures that users
can run performance tests without interference by others.
In contrast, the isolation property for network allocatable
resources (VLANs) provides only system isolation; this is
because we do not currently have a reliable implemen-
tation ensuring performance isolation for networks. The
IP addresses are allocated from a pre-assigned pool. For
all allocatable resources, Chameleon provides a resource
calendar that facilitates planning.

While the implementation of individual allocatable re-
sources varies, the ability to allocate, meter, and enforce
usage is implemented via the same service. The Lease
Manager is based on a separate OpenStack service called
Blazar [9], to which we are actively contributing. We addi-
tionally integrated or implemented separate resource plugins
for each use-case we required: bare metal node reservation

(via OpenStack Nova, the compute instance provisioning
service), VLAN 802.1Q tag reservation, and public IP reser-
vation (via OpenStack Neutron, the network provisioning
service).

A. Blazar: Allocatable Resource Manager

The Blazar system consists of two components: an API
component, which provides the lease interfaces over an
authenticated HTTP/JSON interface, and a manager com-
ponent, which provides lease, reservation, and resource
lifecycle management, as well as the delegation to various
resource plugins for enactment. The API and manager
components communicate over an RPC interface, where an
AMQP bus serves as the transport layer. Authentication to
the HTTP/JSON interfaces is performed via OpenStack’s
Keystone [20] authentication service. The interfaces are ex-
posed to end-users over the Internet on a TLS-encrypted con-
nection, which is terminated by a proxy running HAProxy.

The manager component handles user requests and trans-
lates them into actions against the backing resource and
reservation databases. Blazar does not lazy-assign resources;
when a user creates a lease, specific resources are selected
and assigned to the lease, making them unreservable by other
users for that time period.

We use the SQLAlchemy library [21] to create a thin
object-relational mapping (ORM) layer that the manager
uses to interact with database entities. Each resource type
has three database tables associated with it: a resources
table, which stores the resource records, a reservations table,
which stores a set of constraints specific to a reservation
for the resource and any parameters needed for enactment
of the reservation, and an allocations table, which stores
associations between the first two tables once resources are
allocated to a reservation. An optional fourth table called
extra capabilities can be used to store arbitrary key/value
pairs that further describe a resource. Users can leverage
these extra capabilities, combined with some attributes stan-
dard to the resource (and stored in the resources table), to
filter the resource inventory via their reservation constraints.
For the lease management, we have three tables: leases,
which stores the lease records, events, which stores the lease
lifecycle event records, and reservations, which serves as a
general table for all reservations across all resource types. A
record in a resource’s reservations table is associated with
a record in the general reservations table. This separation
is necessary due to a specific enactment plugin sometimes
needing additional parameters stored at lease creation time,
e.g. which network to assign a public IP from.

The manager queries the events table every few seconds
and triggers any unexecuted events whose time has come
via plugins described below.



B. Nova/Ironic Plugin: Nodes as Resources

The Nova plugin implements reservation of bare metal
nodes. In OpenStack, bare metal provisioning is a combined
effort between the Nova and Ironic [22] systems. When an
operator adds a bare metal node to the inventory, the operator
does so by specifying an Ironic node UUID. The plugin
retrieves specs such as how many CPUs are on the node
from Nova. These attributes are then mirrored in the resource
database. Operators can add additional metadata to the node,
e.g. rack placement or CPU vendor information, which is
stored in the extra capabilities table for this resource type.

At lease start, the plugin moves the reserved nodes to
a special Nova host group. Users must present a valid
reservation ID to Nova when launching an instance, and
Nova schedules their instance on one of the nodes in this
host group. Before the lease ends, the plugin will send a
notification email to the email address tied to the user’s
OpenStack account. This is important because when a lease
ends, the plugin will instruct Nova to terminate all running
instances on the bare metal nodes, and users may want to
ensure their data is moved off the node beforehand. The
plugin cleans up the host group after instance termination.
Any BIOS or firmware settings are reset as part of instance
termination; this is performed by Ironic.

C. Neutron Plugin: VLANs as Resources

One of the networking enactment plugins Chameleon uses
is the network segment plugin, which allows users to reserve
a VLAN 801.2Q tag. The Chameleon testbed infrastructure
resides on host institution networks both at TACC and at
the University of Chicago, and initially relied upon switches
provided by the host institution. For this reason, only a
limited number of 801.2Q tags were provided to Chameleon,
and demand for isolated networks could exceed capacity.
Additionally, network slices are built by Chameleon users
using special stitchable VLANs extending to the nearest
stitchport [23], and they are few in number (e.g., only 10 are
available at the University of Chicago site). To utilize the
plugin, an operator adds networks to the resource inventory
by specifying their 801.2Q tag. Additionally, operators con-
figure Neutron to no longer allow users to create networks
with a specific 801.2Q tag, as only the resource plugin
should be allowed to perform this action.

During lease creation, the VLAN resource plugin will
instruct Neutron to create a new OpenStack network with a
given 801.2Q tag. The network is associated with the users
account, and will appear in their dashboard for use, though
they wont be able to modify it. When the lease ends, the
network is simply deleted, making sure to first unhook the
network from any running instances.

D. Neutron Plugin: IPs as Resources

The second networking enactment plugins is responsible
for managing the IPv4 addresses allocated to Chameleon on

the public Internet. Metering public IPs is important as, in
our experience, users would often allocate more public IPs
to their account than needed, or likewise forget to release
them when finished. Over time, this can deplete the pool
of available IP addresses. To utilize this plugin, an operator
adds IP addresses to the resource inventory by specifying
their IPv4 address and Neutron network UUID. Normally,
Neutron provides an interface that allows users to request
an IP on a given network out of an allocation pool in an
on-demand fashion. To properly implement IPv4 addresses
as an allocatable resource, this interface must be disabled,
which can effectively be accomplished by configuring the
Neutron network to have an empty on-demand IP allocation
pool.

During lease creation, the IP resource plugin will instruct
Neutron to allocate a new Floating IP on the network. The
Floating IP is then associated with the user’s account, and
will appear in their dashboard for use. When the lease ends,
the Floating IP is deleted after ensuring it is no longer
assigned to any running instance. It is not currently possible
to prevent a user from deleting this Floating IP, but in
this event, the resource plugin simply does not attempt to
delete the IP at lease termination. This enactment plugin was
contributed by NTT.

V. ANALYSIS OF LEASE USAGE ON CHAMELEON

To understand how users were using leases we analyzed
the usage data from the Chameleon testbed between 2015-
07-17 and 2019-04-11. The usage is broken down over all
types of node resources on the Chameleon testbed described
in detail at [24]. We gradually added resources to the
Chameleon testbed (e.g., the Skylake nodes were added
slightly more than a year ago) so for each resource the
relevant usage is shown from the time it was added. We
also removed all maintenance leases as well as all operations
leases from the pool to focus exclusively on user behav-
ior. The usage data was collected from OpenStack Blazar
(reservation service) and Nova (compute service) databases,
and all the DevOps data (data belongs to the internal
development and maintenance projects) was excluded.

We first asked to what extent Chameleon users took
advantage of the fact that testbed resources are allocatable
rather than merely using resources that happened to be
available when the user started the experiment. To assess
that we counted the number of advance reservations used
for each type of allocatable node resources on Chameleon
(reservations for floating IP addresses and VLANs were
introduced very recently and have not yet generated reliable
usage information). We considered the lead time with which
each reservation was made and mapped them into four
categories: (1) on-demand, (2) up to a day in advance
(reservations with short lead time), (3) up to a week in
advance, and (4) more than a week in advance (reservations
with long lead time). The results are shown in Figure 2



Figure 2. The relationship between reservation lead time and resource
usage. Upper: percent usage of resources for various node types; Lower:
percentage of leases that falls into four different reservation lead time
categories for various node types.

(lower) where each category is shown as percentage of the
total number of leases for that specific resource.

The results show that the most reservations and with
the most lead time were made for the GPU resources,
a resource type that is very much in demand, closely
followed by storage hierarchy nodes, also a very desirable
resource group. In terms of reservations with long lead
time, the FPGA and Skylake nodes are also notable. We
then overlaid the graph with a graph of resource usage
Figure 2 (upper) which shows strong correlation between
resource usage measured as a total time a resource has been
leased divided by total time available across all resources
in that type (times when resources were in maintenance
were excluded). The superimposed graphs show a strong
correlation between the number of advance reservations and
resource popularity: clearly, as resources are harder to obtain
users are increasingly more motivated to allocate resources
in advance.

We then asked how much of an incentive to make a reser-
vation is the need to obtain a multi-node lease. We asked
what percentage of all advance reservations on Haswell and
Skylake resources (i.e., larger clusters created specifically
for multi-node experimentation) were made for multi-node
leases. It turns out that on Skylakes 53.17% of advance
reservations were made for leases of more than one node
(in that 35.61% for reservations of more than 8 nodes) and
on Haswells 40.78% were made for leases of more than one
node (in that 20.80% for reservations of more than 8 nodes).
This again reflects the difference in usage of the resource
(there are more Haswell nodes and Skylakes are newer and
thus more popular).

A similar relationship is illustrated in Figure 3 below
which compares utilization of the GPU P100 nodes over
time: when the cluster got introduced in early 2017 and over

Figure 3. The relationship between reservation lead time and resource
usage of GPU P100 nodes. Upper: percent usage of GPU P100 by month;
Lower: percentage of leases for reservation lead time of GPU P100.

the summer of that year the utilization was relatively low and
users were almost always able to find resources on-demand;
as the resource became better known however users had to
increasingly use advance reservations with longer lead times;
the recent reversal of this trend reflects new policies that
were introduced recently to prevent individual users from
creating excessive numbers of leases.

While the capability to make a resource lease supports
the critical requirement for temporary resource ownership,
in the absence of incentives (such as payment) for users
to limit their usage it also creates the potential for misuse.
While Chameleon has policies that limit this misuse – usage
is charged against allocations, leases are limited to 7 days,
and there are limits on how many leases a user can have
open – the effectiveness of these policies in practice is a
matter of interest. To evaluate it, we use a simple measure:
since a user cannot do much with a lease unless s/he deploys
an instance, we defined a lease in-use metric, which reflects
the percentage of time a lease has an instance deployed on
it, and expressed it as the ratio of time spent with instance
deployed over the total time of reservation, both calculated
across all the nodes in a lease.

Figure 4 shows the lease-in-use metric for all Chameleon
leases. We can see that by this metric 38.86% of leases were
fully used, 62.87% of leases were more than 80% used,
but 18.65% of the leases were used less than 20% and a
substantial 15.1% never had an instance deployed on them.
While some discontinuity in lease usage is legitimate (due
e.g., to changing configuration of resources), there are at
least two examples of simply not sharing fairly: users make
the reservation to “hold the resource in readiness” in which
case the beginning of the lease is not used (we found that
5.8% of all leases were not used for at least a day) or they
may forget to release resources that are no longer needed
(we found that 5.7% of all leases were not used for at least



Figure 4. The cumulative distribution function (CDF) of lease percent
usage

a day before they expired). On the other hand, we also found
that 19.15% of all leases released resources early. Clearly,
the ability to reserve resources has to come with incentives
promoting reasonable sharing (as it does in e.g., commercial
clouds when the incentives are monetary).

VI. RELATED WORK

Various ways of allocating resources to provide isolation
for experiments have been described in the context of various
experimental testbeds [2–4] but to our knowledge this is the
first work giving a systematic description of them as “units
of allocation” and relating them to similar concepts enabling
exclusive usage in infrastructure clouds.

Many approaches to advance reservations have been
proposed, including our own work [17], [25]. Here, we
consider advance reservations over multiple resource types
and present the experiences of their use overtime. Open-
PEX [26] as well as [27] describe negotiation protocols
that allows users and providers to come to an agreement
when the original request cannot be precisely satisfied;
their focus is on negotiation and is orthogonal to our
approach. Reservations of network resources are described
by Charbonneau et al. discussed a number of architectures
for supporting advance reservation of network resources,
including OSCARS, DRAC, EnLIGHTened, G-Lambda, and
PHOSPHORUS [28].

Finally, in terms of implementation the work on ad-
vance reservations in OpenStack has been originally initiated
by [29] to investigate the impact of advanced reservations
for energy-aware provisioning of bare-metal cloud resources.
We build on this work, and extended it to fit the needs of
an experimental testbed as well as generalize it to manage
multiple types of resources, including networking.

VII. CONCLUSION

In the course of designing an experimental testbed for
Computer Science research we developed the abstraction

of allocatable resource, which allows clients to provision
well-defined, isolated resources available between client-
controlled time events. This paper describes the architecture
of a service managing such allocatable resources. We im-
plemented this architecture as the Blazar component within
the widely used OpenStack system, originally to manage
allocatable compute resources, then extending it to manage
floating IPs and VLANs. The presented architecture is
adaptable and can be extended further to manage container
deployments, IoT devices, wireless networks, or concepts
relating to other domains.

An analysis of three and a half years of usage of Blazar
on the Chameleon testbed shows that advance reservations
are an effective tool for allocating resources especially in the
presence of resource scarcity. At the same time, we note that
a close management of user incentives is needed to ensure
that the managed resources are being made good use of and
shared fairly within the community.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. We would like to thank the OpenStack commu-
nity whose work we leverage, in particular contributions
from NTT and other organisations to the OpenStack Blazar
project. This material is based upon work supported by
the U.S. Department of Energy, Office of Science, under
contract number DE-AC02-06CH11357.

REFERENCES

[1] P. Mell, T. Grance et al., “The NIST Definition of Cloud
Computing,” 2011.

[2] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez,
E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc, N. Melab et al.,
“Grid’5000: A Large Scale and Highly Reconfigurable
Experimental Grid Testbed,” The International Journal of
High Performance Computing Applications, vol. 20, no. 4,
pp. 481–494, 2006.

[3] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, and I. Seskar, “GENI: A
Federated Testbed for Innovative Network Experiments,”
Computer Networks, vol. 61, pp. 5–23, 2014.

[4] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau, “Mobile Emulab: A Robotic
Wireless and Sensor Network Testbed,” in Proceedings
IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications. IEEE, 2006,
pp. 1–12.

[5] G. Von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Voeckler, R. J.
Figueiredo, J. Fortes et al., “Design of the Futuregrid
Experiment Management Framework,” in 2010 Gateway
Computing Environments Workshop (GCE). IEEE, 2010,
pp. 1–10.



[6] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill,
J. Mambretti, P. Rad, and P. Ruth, “Chameleon: A Scalable
Production Testbed for Computer Science Research,” in
Contemporary High Performance Computing: From
Petascale toward Exascale, 1st ed., ser. Chapman
Hall/CRC Computational Science, J. Vetter, Ed. Boca
Raton, FL: CRC Press, 2018, vol. 3, ch. 5.

[7] Chameleon. [Online]. Available:
https://www.chameleoncloud.org

[8] Openstack. [Online]. Available: https://www.openstack.org/

[9] Openstack Blazar. [Online]. Available:
https://docs.openstack.org/blazar

[10] Openstack Nova. [Online]. Available:
https://docs.openstack.org/nova

[11] Openstack Neutron. [Online]. Available:
https://docs.openstack.org/neutron

[12] J. Smith and R. Nair, Virtual Machines: Versatile Platforms
for Systems and Processes. Elsevier, 2005.

[13] J. Turnbull, The Docker Book: Containerization is the New
Virtualization. James Turnbull, 2014.

[14] Docker. [Online]. Available: https://www.docker.com/

[15] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific Containers for Mobility of Compute,” PloS one,
vol. 12, no. 5, p. e0177459, 2017.

[16] R. McGeer, M. Berman, C. Elliott, and R. Ricci, The GENI
book. Springer, 2016.

[17] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu, “Web Services Agreement Specification
(WS-Agreement),” in Open grid forum, vol. 128, no. 1,
2007, p. 216.

[18] F. Liu, K. Keahey, P. Riteau, and J. Weissman,
“Dynamically Negotiating Capacity between On-demand
and Batch Clusters,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage, and Analysis. IEEE Press, 2018, p. 38.

[19] Chameleon Resource Discovery. [Online]. Available:
https://www.chameleoncloud.org/hardware/

[20] Openstack Keystone. [Online]. Available:
https://docs.openstack.org/keystone

[21] SQLAlchemy. [Online]. Available:
https://www.sqlalchemy.org/

[22] Openstack Ironic. [Online]. Available:
https://docs.openstack.org/ironic

[23] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo,
V. Orlikowski, C. Heermann, and J. Mills, “ExoGENI: A
Multi-domain Infrastructure-as-a-Service Testbed,” in The
GENI Book. Springer, 2016, pp. 279–315.

[24] Chameleon Hardware Discovery. [Online]. Available:
https://www.chameleoncloud.org/hardware/

[25] B. Sotomayor, K. Keahey, and I. Foster, “Combining Batch
Execution and Leasing using Virtual Machines,” in
Proceedings of the 17th international symposium on High
performance distributed computing. ACM, 2008, pp.
87–96.

[26] S. Venugopal, J. Broberg, and R. Buyya, “Openpex: An
Open Provisioning and Execution System for Virtual
Machines,” in 17th International Conference on Advanced
Computing and Communications (ADCOMŠ09). Citeseer,
2009.

[27] J. Chung, R. Kettimuthu, N. Pho, R. Clark, and H. Owen,
“Orchestrating Intercontinental Advance Reservations with
Software-defined Exchanges,” Future Generation Computer
Systems, vol. 95, pp. 534–547, 2019.

[28] N. Charbonneau, V. M. Vokkarane, C. Guok, and I. Monga,
“Advance Reservation Frameworks in Hybrid IP-WDM
Networks,” IEEE Communications Magazine, vol. 49, no. 5,
pp. 132–139, 2011.

[29] M. D. de Assunçõo, L. Lefevre, and F. Rossigneux, “On the
Impact of Advance Reservations for Energy-aware
Provisioning of Bare-metal Cloud Resources,” in 2016 12th
International Conference on Network and Service
Management (CNSM). IEEE, 2016, pp. 238–242.


