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ABSTRACT
Chameleon is a large-scale, deeply reconfigurable testbed built
to support Computer Science experimentation. Unlike traditional
systems of this kind, Chameleon has been configured using an adap-
tation of a mainstream open source infrastructure cloud system
called OpenStack. In this paper, we discuss operational challenges
for experimental testbeds and explain what impact they have on the
profile of the operating team. We then discuss methods we devel-
oped to alleviate the operational burden and show how they can be
used in practice. We conclude with a discussion of our interaction
with the user community and describe how experimental platforms
create a high potential for community involvement.
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1 INTRODUCTION
Computer Science experimental testbeds allow investigators to ex-
plore a broad range of different state-of-the-art hardware options,
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assess scalability of their systems, and provide conditions that allow
deep reconfigurability and isolation so that one user does not im-
pact the experiments of another. An experimental testbed is also in
a unique position to support methods facilitating experiment anal-
ysis and improve repeatability and reproducibility of experiments.
Providing these capabilities at least partially within a commodity
framework improves the sustainability of systems experiments and
thus makes them available to a broader range of experimenters.

Chameleon [9, 24] is a large-scale, deeply reconfigurable testbed
built specifically to support the features described above. It cur-
rently consists of almost 20,000 cores, a total of 5PB of total disk
space hosted at the University of Chicago and TACC, and leverages
100 Gbps connection between the sites. The hardware includes
a large-scale homogenous partition to support large-scale exper-
iments, as well as a diversity of configurations and architectures
including Infiniband, GPUs, FPGAs, storage hierarchies with a mix
of HDDs, SDDs, NVRAM, and high memory as well as non-x86
architectures such as ARMs and Atoms. To support systems exper-
iments, Chameleon provides a configuration system giving users
full control of the software stack including root privileges, kernel
customization, and console access.

Unlike traditional experimental infrastructures such as GENI [5],
Grid’5000 [8], Emulab [22], or CloudLab [35] which provide experi-
mental capabilities by developing in-house infrastructures, Chameleon
created an approach that provides similar and partially enhanced
capabilities by building on and extending a mainstream open source
Infrastructure-as-a-Service implementation: OpenStack [32]. Con-
figured with OpenStack’s Ironic [20] component that supports
bare metal provisioning, and enhanced with new experimental
features such as the Bring-Your-Own-Controller (BYOC) function-
ality [6, 36], Chameleon gives users full control of the software
stack including root privileges, kernel customization, console ac-
cess, as well as the ability to experiment with software defined
networking (SDN). Using OpenStack as a foundational layer al-
lows us to leverage the effort of the extensive OpenStack developer
community and greatly increases the pool of potential operators
of the testbed as many have had experience with OpenStack. The
benefit of this approach is akin to using well-supported libraries;
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we as operators benefit from patches submitted by authors or other
members of the wider community, and we know that others are
actively testing the same code we are using on a daily basis to run
our infrastructure. It also allows us to give back: Chameleon is
a core contributor to the OpenStack Blazar system [7], which is
used to provide advanced reservations of physical hosts, network
segments, and IP addresses [23].

Chameleon has been used to support many projects in research
on operating systems, virtualization, power management, network-
ing, high-performance computing (HPC), cloud computing, data
science, machine learning, and others. A sizable proportion of
Chameleon users also leverage the system for education in com-
puter science. To date, Chameleon has supported 3,000+ users work-
ing on 500+ projects.

In this paper, we first discuss the challenges of operating an
experimental platform like Chameleon and compare them with
traditional scientific research platforms aswell as clouds.We discuss
what operating this type of infrastructure means to people and
describe ways of streamlining these operations we developed to
alleviate their burden. Finally, we discuss our interactionswith users
and explain why experimental platforms create a larger opportunity
for community engagement.

2 OPERATIONAL CHALLENGES
2.1 Clouds versus HPC Resources
The cloud paradigm is still a relative newcomer in scientific data-
centers most of which are operated as traditional HPC centers; to
outline the challenges associated with running them we therefore
briefly highlight the differences in the offering these two approaches
present to the user, and the resulting differences in the complexity
and cost of their operations.

On a typical HPC resource, users submit jobs via a batch queue
which are run on an on-availability basis [26] in non-privileged
accounts (e.g., no sudo access, limited access to various file sys-
tems, etc.). This approach to resource management thus optimizes
provider concerns, i.e., emphasize utilization and relative simplic-
ity of management against flexibility and user control: traditional
HPC workloads sit in queues, sometimes for hours, and run once
node resources are available. Another feature of this approach is
that it reduces a significant complexity of resource provisioning
and scheduling to a relatively simple and constrained user inter-
face effectively trading-off user flexibility for a simpler and more
manageable implementation.

Cloud resources on the other hand, emphasize support for inter-
active resources that satisfy hard user constraints for availability
at a given time [23] – as well as flexibility in terms of configu-
ration. To fulfill those requirements, users are given temporary
time-controlled ownership of resources containers (typically pro-
vided via virtual machines) that are configured in a way of their
choosing and give them high level of privilege (i.e., root). Users may
devise many complex configurations across compute, networking,
and storage resources, effectively requiring the system to correctly
(and securely) configure virtual clusters or complex distributed
environments.

These differences in offering and emphasis result in a range of
differences in how these types of resources are used, but more

importantly in their complexity, the associated operations cost, and
the dynamics between the operators and user community. First,
cloud systems are more complex because they solve a significantly
more complex problem. One of the most significant differences is in
networking: HPC job schedulers do not need to manage networks
to correctly connect new user resources (“instances”) to potentially
multiple networks; much of the complexity of cloud computing
comes from the fact that such networking needs to be reliably and
dynamically managed. Further, correct management of security
becomes significantly more complex in the clouds because the
attack surface is larger and types of potential attacks more varied:
users typically get root permissions to deployed instances that
they configure themselves with all the potential for risk that this
involves.

Another difference comes withmanagement user artifacts.While
cloud users in principle want to manage their own images, they
typically also expect providers to maintain at least some popular
configurations on hand as a startup base – together with associated
artifacts such as orchestration or contextualization templates that
allow users to deploy complex configuration such as virtual clusters.
This implies not only additional system administration support but
also the advisability of supporting community mechanisms that
would allow users to share such configuration artifacts which calls
for a tighter integration of the dialogue between users and operators.
Last but not least, having been around for significantly less time,
cloud computing is a less mature paradigm than HPC systems;
this implies not only more operations costs but more “unknown
unknowns” in operations and problem solving that typically require
a higher level of expertise to address.

2.2 Clouds as Experimental Facilities
The configuration of Chameleon grew out of the desire to test the
hypothesis that experimental facilities for Computer Science sys-
tems research can be configured as modern clouds. An experimental
facility for Computer Science systems research has to support deep
reconfigurability and both system and performance isolation [23],
that is, it has to support the creation of isolated user environments
(such as e.g., can be achieved by virtual machines and are available
in the mainstream via commercial clouds) and offer direct access
to hardware and firmware to support experiments that cannot be
supported via a layer of virtualization to e.g., explore performance
variability or power management. Chameleon uses OpenStack with
Ironic (a component that implements bare metal deployment) to
provide these capabilities. While this provides the bulk of capabili-
ties that an experimental platform for Computer Science research
needs to support, it does not provide them all; we’ve had to extend
this base to support additional features such as allocatable resource
management (i.e., the Blazar service referenced in Introduction),
and add new ones such as support for networking experiments.
Last but not least, in order to stay relevant, experimental platforms
need to evolve as new research questions open up which means
that an experimental platform is in constant state of development.

Operating at Bare Metal Level. Operating at bare-metal level
increases the complexity of cloud management (and consequent
operational demands) significantly. First, giving users access to bare
metal resources and the ability to make changes to components
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such as the BIOS significantly increases the complexity of security
management. Also, offering resources via virtual machines or other
types of container provides an additional layer of abstraction that is
not present when resources are provided at bare metal, increasing
the complexity of both developing/providing some of the features
and operating the testbed.

While infrastructure maturity for cloud infrastructure is rela-
tively underdeveloped, it is worse for bare metal: although most
OpenStack components have now been integrated with Ironic, some
important capabilities (e.g., Ironic’s use for Cinder, the OpenStack
remote block storage component, snapshotting, etc.) are still not
available. It is also clear that the Ironic integration gets propor-
tionally less attention (in terms of performance management for
example) than more commonly used components of OpenStack:
we have observed performance bottlenecks for scheduling of an
instance on a bare metal machine, during provisioning of networks
on physical switches, during the PXE-based instance provisioning
itself, or even for user interface response.

These shortcomings made it necessary for us to develop a variety
of adaptations. An example of issues created by the missing hyper-
visor abstraction layer is that security groups are unsupported for
bare metal – yet, they are even more critical to support here, given
the higher security management requirements. We overcame this
by creating Firewall-as-a-Service [15]. Missing features, such as
snapshotting, were implemented by our team albeit in a different
form than is supported by OpenStack for virtual machines. While
those adaptations allow us to provide a more complete offering to
our users they do increase the operational complexity as infrastruc-
ture immaturity needs to be overcome or improved, new solutions
need to be researched and developed, features need to be either
contributed or patched with every upgrade.

Networking. Since cloud resources are by nature remote, network-
ing is an important aspect of cloud computing experimentation.
Most public cloud providers have rolled out advanced networking
services that are simple to access by any cloud user, e.g. routing
between regions and private networking spaces within a cloud.
However, access to low-level, externally facing cloud network ser-
vices such as AWS Direct Connect [10], Azure ExpressRoute [14],
and Google Dedicated Interconnect [19] is difficult, expensive, or
even simply impossible to most researchers without complicated
support by campus IT staff, as well as national and regional network
providers. As a result, most research on these services is being done
by a few select scientists or campus IT staff themselves. Reducing
the hurdles that prevent individual researchers from accessing these
services enables a wide array cloud experiments, as well as provides
expanded training to the next generation of campus IT staff in the
use of these otherwise inaccessible services. Using networks for
Computer Science experimentation is thus in a class by itself in
terms of the demands it places on operators and the capabilities it
offers to users.

The most significant challenge to increasing access to direct
cloud network connection services is automation of key provision-
ing steps that currently require IT staff intervention. Public cloud
providers provide a set of connection points (that we call “stitch-
ports” [4]) in various geographic locations. Attaching a campus
facility to a public cloud using a direct cloud connection requires
a provisioning a series of private network circuits between the

campus and a cloud connection point. Each circuit in the series will
be provisioned by a different regional or national network tran-
sit provider. A typical direct cloud connection between a public
cloud and a campus might make use of a shared cloud connec-
tion point provided by a national transit providers (e.g., Internet2).
This national provider will provision a circuit between the cloud
connection point and the campus’ regional network provider. The
regional provider will, in turn, provision a circuit between the
national provider and the campus. Once in the campus, IT staff
can connect the circuit to the desired local facility. Each of these
circuits and connection points requires intervention by IT staff
authorized to provision the appropriate infrastructure. In some
cases (e.g. Internet2 and ESnet) network providers have APIs that
the researcher, or more commonly the campus IT staff, can use to
deploy the required infrastructure on their own. However, most
regional providers and campus infrastructure have no such API and
require manual intervention by trained IT staff.

Recent additions to Chameleon have enabled users to design
and run experiments using AWS Direct Connect, Azure Express-
Route, and/or Google Dedicated Interconnect without involving
institutional IT staff. These experiments can connect Chameleon
resources with the public cloud direct connections. Users can mimic
existing or imagined campus infrastructure by deploying large scale
experiments using Chameleon hardware and directly connect these
“campuses” to public clouds. These connections take advantage
of Chameleon’s direct stitching capabilities and it’s isolated user
controlled OpenFlow networks using Corsa DP2000 series switches.

Evolution. A very significant complexity factor in operating a
Computer Science research platform is the fact that by nature an
experimental instrument has to change as the research frontier
evolves. New research problems and new opportunities to solve
them mean not only new hardware, and thus horizontally porting
the infrastructure to new hardware types, but also the need for
new vertical capability development. For example, in Chameleon
porting our infrastructure to ARMs and now also various types of
IoT devices required additional horizontal investment, while sup-
porting new types of networking experiments to keep pace with
the filed required additional vertical development. Finally, the idea
of Computer Science testbeds itself is relatively young and evolv-
ing: for example, we are still in the process of understanding the
potential of testbeds as a platform for repeatability and replication
which drives discovery and feature development around that topic.
This type of evolution is thus an inherent feature of an experimen-
tal testbed; to account for it development has to be a significant
component of the operation of any infrastructure of this type.

2.3 People Dynamics
The increased operational demands of testbeds place a demand on
operations specialists in two important ways. First, they require a
significant level of expertise. This expertise needs to be broad and
range across topics from systems administration, cloud infrastruc-
ture (i.e., OpenStack), to networking and security. While teams can
of course include specialists in each area (such as e.g., dedicated
network engineers or hardware specialists) at least some of the
operators in integrative roles have to have cross-disciplinary exper-
tise in all operational concerns. Further, experience in development
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is critical, both with respect to DevOps operation style and to ac-
count for the need for adaptation and evolution described above.
This need for a specialized mix of high expertise means that the
on ramping process is complex and requires significant time for
individuals joining the team.

Second, the complexity of the system also makes operating
testbeds – including configuration, upgrades, as well as problem
diagnosis and resolution – more complex, effort intensive, and time
consuming. We employ three broad strategies to mitigate that. First,
building on a mainstream open source infrastructure significantly
cuts down on the development costs as we can integrate features
developed by the broader community as well as rely on their sup-
port to some extent; though the cost of additional features persists.
Second, much effort can be saved by developing streamlined oper-
ations models described in sections below; though those models
themselves take significant time to develop which means that the
effort invested there takes time to amortize. Finally, packaging the
approach and making it available to others for easy deployment
and integration creates the potential for better amortization of this
work.

While all infrastructures can benefit from closer interaction with
user community such as e.g., engaging users in community sup-
port activities, experimental testbeds have a stronger community
interaction component than traditional infrastructures. This is due
largely to the fact that there is a potentially large base of digital arti-
facts such as images and orchestration templates that can be shared
among all of the community. In this case, successfully engaging the
community in sharing them will ensure increased relevance on one
hand (as the existence of the most current images will make the
infrastructure more useful), and cut down on operations costs on
the other. In testbeds, this potential for sharing gets even broader –
but it also gets more important as it supports fundamental scientific
patterns such as repeatability and replication. Finally, in testbeds
understanding user needs goes beyond being able to provide incre-
mental improvements such as ease of use and means keeping the
hand on the pulse of evolving research needs.

3 STREAMLINING OPERATIONS
Over time we have made efforts to drive the cost of operating
Chameleon down as low as possible by combining a strong “base”
of commodity systemswith layers of automation around error detec-
tion and resolution. What this means in practice is that, whenever
possible, an error should be correctable in either an automated or
well-documented process to both ease the burden and the expertise
required of the operator.

3.1 Keeping the System Running
Achieving such automation is nontrivial in an environment like
Chameleon, which consists of many OpenStack services, their de-
pendent system services, additional bespoke applications, and a
heterogeneous inventory of user-provisionable nodes. To tackle
this problem, it is helpful to work backwards. The end goal of au-
tomation (“automatically resolve this problem”) implies we have
detected the problem. To detect the problem, we must have been
able to measure some symptoms expressed by the system at large.
We discuss each of these steps below.

Monitoring. Performing triage across the system is difficult be-
cause each piece of the Chameleon infrastructure has its own way
of expressing errors. Bare metal servers may indicate via their base-
board management controller that a voltage reading is outside of
bounds or that a cable appears to be unplugged, while an OpenStack
service may be returning an HTTP error code or logging output
to its error log. The nodes running the Chameleon services may
themselves have underlying issues, such as a disk partition running
out of space or the resources being overloaded. In the past, we used
Nagios [29] to centrally collect and display this data, however, we
found that this system worked best if you knew what questions
to ask (“is the load on this machine high? Is the OpenStack API
down?”), and we found that this is often not obvious. We needed a
more holistic view of the normal operating state of the system so
we could understand baselines and identify aberrant behavior.

To improve this, we adopted an approach of collecting metrics
based on symptoms of failure, not failure itself. We deployed the
Prometheus [34] monitoring system to provide operators with real-
time performance metrics with fine granularity and broad coverage
and implemented several custom metric exporters for Chameleon-
specific symptoms (e.g., number of failed provisions.) We addi-
tionally configured all OpenStack services, which predominantly
communicate their error state via logging, to log to one standard
location, and then implemented automatic ingestion of all logs via
Fluentd [16] into a searchable Elasticsearch [13] database. We inte-
grated both the output of Prometheus and Elasticsearch with the
Grafana [17] visualization tool to give operators an overview of the
health of the system and make it easier to diagnose abnormal con-
ditions, such as a large spike of network traffic or a large number of
failed provisions that could be symptomatic of undetected errors.

In addition, we maintain a suite of black-box Jenkins [21] tests
that periodically test various “happy paths” through the system,
e.g. reserving a node, provisioning the node with a Chameleon-
provided disk image, assigning a public IP to the node, and ensuring
that external SSH connectivity works and that experiment metrics
are being automatically pushed from the node once it is running.
Depending on the scope of the test, they may run hourly (to give
quick feedback on a particular system that may be in an error
state), or daily (to act as an overall “smoke test” in to the health of
the system from a typical user’s point of view.) These tests serve
two purposes beyond catching high-level errors: they expose holes
in our fine-grained monitoring infrastructure, and also provide
data points to allow us to correlate such errors to any detectable
proximate causes.

Detection. Once enough data about the system was being col-
lected via our monitoring infrastructure, we were able to more
clearly understand the “shape” of some of our failure cases, e.g.
provisioning errors increasing when a particular staging direc-
tory for disk images ran too full. This is where the benefits of
symptoms-based metrics shined: we used the query language built
in to Prometheus to write targeted alerts on our symptoms, which
were then broadcasted via an Alertmanager [1] system to a visible
communications channel (in our case, a Slack [38] channel dedi-
cated to alerts.) Similarly, having all logs consolidated in a database
allowed us to write custom queries that could detect certain failure
cases we were aware of. This same approach was used to detect
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and alert on system event log (SEL) messages from our fleet of bare
metal nodes.

Resolution. Detecting a problem is not very useful if there are
no discrete actions an operator can take to fix it. While certain miti-
gations might be known to an experienced operator, this knowledge
takes time to accrue and means that juniors (or indeed, operators
simply new to Chameleon’s systems) have significant barriers to
productivity. Therefore, we took steps to ensure that when an alert
was written, it is linked to a corresponding runbook detailing more
information about what the alert is expressing, what the user im-
pact is, and what some possible (or known) mitigation steps are.
The effect is that when an alert is seen, e.g. in a Slack channel, there
is an easy path for an operator to find more information and get to
work resolving the issue.

Some errors are predictable enough in their regularity that we
can reliably fix the symptom, even if the root cause may go un-
treated. Typically these are issues where various OpenStack systems
have not converged to a steady state, and a simple adjustment is
often all that is needed, e.g. restarting the service or updating a
database to make it consistent. While it is true that such issues
should theoretically not arise, our experience has told us that this is
the reality of running a testbed at this scale, and the simple solution
of whacking the system in a few precise areas does the trick, espe-
cially as the time to investigate and solve the root cause exceeds
the cost of implementing the automated workaround. We maintain
a set of scripts, called “hammers” [18], that can fix up known bad
states in the system quickly. In addition to fixing common errors,
we also use hammers to prevent problems with system usage (e.g.,
detect conditions when the system is used in ways that are not
consistent with our policies). Hammers are currently implemented
as periodic Jenkins jobs, but can also be run ad-hoc by operators
as needed; over time we hope to integrate them to automatically
respond on-demand when the system enters a known error state.

3.2 System Maintenance
System upgrades. As the system grew in complexity, it became
untenable to maintain a manual release process. Upgrading the
OpenStack services in particular was a task that only expert op-
erators could tackle, due to the experience necessary around the
roles of each service and the interdependencies. This was further
complicated by the configurations between multiple Chameleon
sites getting out of sync with each other, leading to confusing sit-
uations where a certain error would appear in one site but not
another. We tackled these problems by settling on an approach
that automatically can handle upgrades, configuration changes,
and new service deployments. For OpenStack services, we leverage
the Kolla-Ansible [25] project, which consists of a set of Ansible
scripts that can provision OpenStack as Docker containers [12].
Our monitoring infrastructure and custom applications are simi-
larly deployed with a set of Ansible scripts we maintain. There are
numerous benefits for this approach, which ultimately requires ex-
pressing all Chameleon infrastructure as code: it allows us to have
a reliable process that easy to manually invoke if need be, supports
automation as it is hands-off, and, most importantly, allows us to
effectively package all of Chameleon as one artifact, deployable in
a variety of environments.

Appliance releases. We rely on a series of tools that automate
most of our disk image release process. In particular, we use DiskIm-
ageBuilder [33], a tool provided by OpenStack: it allows us to ex-
press our disk image build process as a sequence of provisioning
scripts, which can then be run on top of an existing base image. This
helps us reliably create images, yet we still must take care to release
upgrades as the base image e.g. CentOS or Ubuntu distributions
are updated. We solved this with another set of periodic jobs that,
as new upstream OS releases are released, automatically trigger
rebuilds of our disk images bound to that OS. These images are then
released to the testbed as the latest version of the OS image. We also
periodically test that these images deploy correctly on our various
hardware configurations; for each type of machine, we schedule a
test provision every week, for each disk image Chameleon provides.

4 PACKAGING OPERATIONS
Chameleon’s utility increases with every deployment: more sites
mean more specialized hardware, more capacity for experimen-
tation, and more experiments. We have thus worked to package
Chameleon (and the automated operational structure described
above) such that others can deploy it with minimal configura-
tion. Reproducing Chameleon using vanilla OpenStack components
is possible, but challenging. For one, Chameleon maintains sev-
eral forks of OpenStack services with minimal patch sets that are
custom-tailored to the needs of a testbed; while most of them have
been contributed it sometimes takes a long time for a contribution
to be accepted. Furthermore, configuring a functional testbed that
supports bare metal provisioning requires significant understand-
ing of the underlying configuration of all the various OpenStack
components. The human challenge then becomes: how do we make
Chameleon feasible to install for as large community of operators
without requiring them to absorb what is complex and specialized
knowledge? In order to address it, we have worked to generalize
the internal deployment of Chameleon such that it can be released
and deployed by any user; we call this CHI-in-a-Box.

We boiled down the interface for CHI-in-a-Box is a set of config-
uration files. The site operator must define the inventory, or which
physical machines will host which components of Chameleon, a
globals YAML [40] configuration file, which defines important vari-
ables such as subnets and which parts of Chameleon should be
enabled, and finally an encrypted passwords YAML configuration
file, which contains secrets such as MySQL [28] passwords for
each system user. By default, such passwords can be automatically
generated using random strings if the operator wishes.

The deployment of CHI-in-a-Box, and indeed with the primary
Chameleon sites, is handled via a commodity tool developed by the
OpenStack community called Kolla-Ansible. Ansible is used to coor-
dinate the deployment of pre-built Docker images on the operator’s
physical infrastructure. Rolling upgrades are supported, solving
one of the biggest pain points with maintaining an OpenStack de-
ployment. CHI-in-a-Box also automatically installs the automated
testbed monitoring and operations tools described above allowing
CHI-in-a-Box sites to reduce their operational costs.

Chameleon has chosen to “dogfood” CHI-in-a-Box internally.
This means that any bug fixes or features that Chameleon operators
add to the internal deployment of Chameleon can immediately
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be leveraged by any other operators running Chameleon as an
associate site.

5 INTERACTINGWITH USERS
We interact with our users via a variety of communication channels
startingwith daily support interactions through a variety of training
and information channels such as blogs, webinars, and the web
page, and finally relatively rare events such as surveys and User
Meetings.

In daily interactions, Chameleon users interact with staff by sub-
mitting support tickets [39]. The submitted tickets are processed
by University of Chicago and TACC staff on alternating weeks;
Chameleon is thus operated as a “single instrument” with ticket-
master staff having sufficient level of privilege on both sites to
handle most problems. The ticket categories range between routine
user profile management (comprising PI requests, allocation review
and renewals, etc.), user questions (e.g., resulting from imperfect
understanding of the system), system problems (e.g., network, hard-
ware, software, or configuration failures), to allocation adjustment
requests. The latter comprise a variety of special resource requests
(e.g., lease extensions, FPGA access, or early user access to newly
released capabilities) as well as fair sharing requests, e.g., the as-
signment of public IPs which may become unavailable [37] due to
users’ failure to release them.

Interacting via support ticket submission was selected over sup-
port via mailing list in anticipation of the scale of the system. The
advantages of this mode of support are that it provides reliable
ticket tracking and thereby ensures that no user problem is left be-
hind. It also greatly facilitates weekly reviews of tickets which are
one of our primary user feedback mechanisms and motivated the
development of many new features. On the other hand, it prevents
users from interacting directly with each other as they would have
if support was given via a mailing list which inhibits the develop-
ment of the community as users might share experiences relevant
to not only direct support questions but also insights related to
experimental methodology and approach. While we try to com-
pensate by providing other communication channels such as the
Chameleon blog, and periodic User Meeting, ultimately we may
have to revisit this decision for community building purposes.

To facilitate sharing of experimental artifacts, such as images
and orchestration templates we provide an appliance catalog where
users can enter appliance description and link it to different ver-
sions of their experimental appliances. While some users con-
tributed appliances effectively providing packaging of systems sup-
ported by their groups such as e.g., MPI [2, 3] or specific exper-
iments [11, 27, 30, 31] we find that relatively few users use it to
ensure repeatability of their experiments. We expect that this is
partly due to still relatively few incentives for repeatable and repli-
cable research and partly to continuing search for the format: our
new integration with Jupyter notebooks is more promising in that
respect and we plan to support it with better sharing mechanisms.

Overall, we find that a proper functioning of the system is a
collaboration between the operations team and the users: a knowl-
edgeable user community, sensitive to the need for fair sharing
as well as operational needs of the system can significantly cut
down on operations costs. Specifically, we are often indebted to our

users for pointing out system shortcomings ranging from errors
to insufficient documentation to desire for new features. On the
other hand, much additional work is sometimes generated when
the system is used improperly, or when best practices are ignored.
In particular, proper management of shared resources, such as e.g.,
releasing nodes or public IP addresses or abstaining from stacking
leases, is clearly required to implement fair sharing on the testbed;
failure to do so often results in a significant support burden on the
operators as they arbitrate the resources between users.

6 CONCLUSIONS
In this paper we have discussed the operational experience be-
hind Chameleon, a large-scale, deeply reconfigurable testbed for
Computer Science research.

Experimental platforms, such as Chameleon, expose a much
broader and more complex interface to users than traditional sci-
entific resources and consequently require both a higher level of
experience and skill as well as potentially higher level of time com-
mitment from the human operators. In addition, since they are
designed to evolve in the set of supported use cases to follow the
evolving research frontier, the operations of an experimental system
will also require development skills. We described how streamlining
operations can alleviate these costs and transform the system into
one that lends itself better to support by a “devops co-op” where
operations staff with high expertise packages operations in such a
way that it can be operated with potentially lesser degree of exper-
tise and skill making experimental platforms cheaper to operate
and thus hopefully more easily accessible.

An important lesson learned from Chameleon is that experimen-
tal platforms include a higher potential for sharing and community
participation than traditional systems. This is largely because many
system-related artifacts such as images or orchestration templates,
Jupyter notebooks, etc. can be relevant to broader sections of the
community. In addition, experimental platforms serve as a “com-
mon denominator” for many experiments eliminating much of the
complexity that goes into systematic experimentation, as well as
repeating, replicating and producing variations on existing experi-
ments.
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