MANAGING ALLOCATABLE RESOURCES

Kate Keahey, Pierre Riteau, Jason Anderson, and Zhuo Zhen
Argonne National Laboratory, University of Chicago
keahey@anl.gov

Cloud 2019
July 11, 2019
CHAMELEON IN A NUTSHELL

- We like to change: testbed that adapts itself to your experimental needs
 - Deep reconfigurability (bare metal) and isolation (CHI) – but also ease of use (KVM)
 - CHI: power on/off, reboot, custom kernel, serial console access, etc.
- We want to be all things to all people: balancing large-scale and diverse
 - Large-scale: ~large homogenous partition (~15,000 cores), 5 PB of storage distributed over 2 sites (now +1!) connected with 100G network...
 - ...and diverse: ARMs, Atoms, FPGAs, GPUs, Corsa switches, etc.
- Cloud on cloud: leveraging mainstream cloud technologies
 - Powered by OpenStack with bare metal reconfiguration (Ironic) + “special sauce”
 - Chameleon team contribution recognized as official OpenStack component
- We live to serve: open, production testbed for Computer Science Research
 - Started in 10/2014, testbed available since 07/2015, renewed in 10/2017
 - Currently 3,000+ users, 500+ projects, 100+ institutions
ALLOCATABLE RESOURCES

- **Definition:** object within a system that can be automatically allocated and managed for exclusive, metered usage, delimited by well-defined time events

- **Exclusive usage/isolation:**
 - System versus performance isolation
 - Examples: GENI slice, containers, virtual machines, instances on commercial clouds, physical modes
 - Implementation costs: e.g., hypervisor overhead, or default state recovery

- **Time-bounded:** e.g., advance reservation (including on-demand)

- **Metered:** policy enforcement and incentive management (via monetary or non-monetary means)

- **Automated lease management:** extends over both time and resource types; ensures scalability
NON-FUNGIBLE ALLOCATABLE RESOURCE AVAILABILITY REPRESENTATION
ARCHITECTURE

- **Components**
 - Service interfaces
 - Lease Manager (functionality generic to all leases)
 - Enactment Plugins (resource-specific functionality)

- **Third-party Services**
 - Adaptation of non-allocatable resources
 - Examples: Nova, Neutron
SERVICE INTERFACES

- **Inventory management (operators)**
 - Objective: manage resource database
 - Create, update, delete manage resource database
 - Informational (show and list)

- **Lease management (resource clients)**
 - Objectives: create and manage records in lease database
 - Leases versus reservations
 - Create and delete: range from a very partial description of a resource, (e.g., “two nodes on the same rack”, “node with at least 2GB of memory”) to very specific (“node X”) and can include multiple resources (e.g., nodes, IPs, VLANs)
 - Update (active or inactive) lease: change resources, numbers, or temporal constraints
 - Informational (show and list)
LEASE MANAGER

- Interface to lease database
 - Information persisted includes original constraints
- Early or late assignment
 - Simplicity versus efficiency
 - Resolved at activation time at the latest
 - Selection targets ranging from user choice to operation optimization
- Event-based assignment management
 - E.g., reassignment in case of resource failure
RESOURCE PLUGINS

- Allow lease manager to manage diverse resources
 - Inventory management: separate reservable resources from freely available resources
 - Lease management: allocating and deallocating resources to a lease

- Lease management functions
 - on_start: resource allocation
 - on_end: resource deallocation
 - before_end: trigger an action at a configurable time before the end of a reservation (e.g., snapshot instances)
 - update_reservation: e.g., add nodes to a lease
IMPLEMENTATION

- Allocatable resources in Chameleon
 - Heterogeneous bare metal machines
 - Isolated network segments (VLANs)
 - Public IP addresses
- OpenStack Blazar implementation with plugins for each
 - HTTP/JSON (Keystone for authentication), SQL Alchemy, early binding with optimizations
- Bare-metal nodes: system and performance isolation, implemented as OpenStack Nova/Ironic plugin
- VLANs: system isolation, implemented as OpenStack Neutron plugin
- IP addresses: implemented as OpenStack Neutron plugin
ALLOCATABLE RESOURCE USAGE ON CHAMELEON
ALLOCATABLE RESOURCE USAGE OVER TIME
HOW RESPONSIBLY ARE RESERVATIONS USED

- Fully used: ~40%
- 80% used: ~60%
- 20% used: ~20%
- Not used: ~15%
- Management
 - Idle at beginning or end: ~5% each
 - ~20% early release
CONCLUSIONS

- Articulated resource management service
- Implemented in OpenStack Blazar
 - Collaboration with OpenStack Blazar community
 - Can be used independently of OpenStack – anticipate future work with IoT devices
- Effective tool in the management of scarce resources
- Managing user incentives
- Come and give it a shot! www.chameleond.cloud.org