CHAMELEON: CLOUD ON CLOUD

Kate Keahey
Mathematics and CS Division, Argonne National Laboratory
CASE, University of Chicago
keahey@anl.gov

May 29, 2019
NSF MERIF Workshop
CHAMELEON IN A NUTSHELL

- We like to change: testbed that adapts itself to your experimental needs
 - Deep reconfigurability (bare metal) and isolation (CHI) – but also ease of use (KVM)
 - CHI: power on/off, reboot, custom kernel, serial console access, etc.
- We want to be all things to all people: balancing large-scale and diverse
 - Large-scale: ~large homogenous partition (~15,000 cores), 5 PB of storage distributed over 2 sites (now +1!) connected with 100G network...
 - ...and diverse: ARMcs, Atoms, FPGAs, GPUs, Corsa switches, etc.
- Cloud on cloud: leveraging mainstream cloud technologies
 - Powered by OpenStack with bare metal reconfiguration (Ironic) + “special sauce”
 - Chameleon team contribution recognized as official OpenStack component
- We live to serve: open, production testbed for Computer Science Research
 - Started in 10/2014, testbed available since 07/2015, renewed in 10/2017
 - Currently 3,000+ users, 500+ projects, 100+ institutions
CHAMELEON HARDWARE

Chameleon Core Network
100Gbps uplink public network (each site)

Core Services
3.5PB Storage System

Core Services
0.5 PB Storage System

Heterogeneous Cloud Units
GPUs (K80, M40, P100), FPGAs, NVMe, SSDs, IB, ARM, Atom, low-power Xeon

Chameleon Associate Site
Northwestern

GENI and other partners

SkyLake
Standard Cloud Unit
32 compute
Corsa Switch
x2

SkyLake
Standard Cloud Unit
32 compute
Corsa Switch
x1

Chicago
Austin

Corsa Switch
x2

Corsa Switch
x1

Haswell
Standard Cloud Unit
42 compute
4 storage
x2

SkyLake
Standard Cloud Unit
32 compute
Corsa Switch
x10

Haswell
Standard Cloud Unit
32 compute

SkyLake
Standard Cloud Unit
32 compute

Corsa Switch
x1

www.chameleoncloud.org
“Start with large-scale homogenous partition”

- 12 Haswell Standard Cloud Units (48 node racks), each with 42 Dell R630 compute servers with dual-socket Intel Haswell processors (24 cores) and 128GB RAM and 4 Dell FX2 storage servers with 16 2TB drives each; Force10 s6000 OpenFlow-enabled switches 10Gb to hosts, 40Gb uplinks to Chameleon core network

- 3 SkyLake Standard Cloud Units (32 node racks); Corsa (DP2400 & DP2200) switches, 100Gb uplinks to Chameleon core network

- Allocations can be an entire rack, multiple racks, nodes within a single rack or across racks (e.g., storage servers across racks forming a Hadoop cluster)

Shared infrastructure

- 3.6 + 0.5 PB global storage, 100Gb Internet connection between sites

“Graft on heterogeneous features”

- Infiniband with SR-IOV support, High-mem, NVMe, SSDs, GPUs (22 nodes), FPGAs (4 nodes)

- ARM microservers (24) and Atom microservers (8), low-power Xeons (8)

Coming soon: more nodes (CascadeLake), and more accelerators
EXPERIMENTAL WORKFLOW

- **discover resources**
 - Fine-grained
 - Complete
 - Up-to-date
 - Versioned
 - Verifiable

- **allocate resources**
 - Allocatable resources: nodes, VLANs, IPs
 - Advance reservations and on-demand
 - Isolation

- **configure and interact**
 - Deeply reconfigurable
 - Appliance catalog
 - Snapshotting
 - Orchestration
 - Networks: stitching and BYOC

- **monitor**
 - Hardware metrics
 - Fine-grained data
 - Aggregate
 - Archive

CHI = 65%*OpenStack + 10%*G5K + 25%*”special sauce”
RECENT DEVELOPMENTS

- Allocatable resources
 - Multiple resource management (nodes, VLANs, IP addresses), adding/removing nodes to/from a lease, lifecycle notifications, advance reservation orchestration

- Networking
 - Multi-tenant networking,
 - Stitching dynamic VLANs from Chameleon to external partners (ExoGENI, ScienceDMZs),
 - VLANs + AL2S connection between UC and TACC for 100G experiments
 - BYOC—Bring Your Own Controller: isolated user controlled virtual OpenFlow switches

- Miscellaneous features
 - Power metrics, usability features, new appliances, etc.
VIRTUALIZATION OR CONTAINERIZATION?

- Yuyu Zhou, University of Pittsburgh
- Research: lightweight virtualization
- Testbed requirements:
 - Bare metal reconfiguration, isolation, and serial console access
 - The ability to “save your work”
 - Support for large scale experiments
 - Up-to-date hardware

SC15 Poster: “Comparison of Virtualization and Containerization Techniques for HPC”
EXASCALE OPERATING SYSTEMS

- Swann Perarnau, ANL
- Research: exascale operating systems
- Testbed requirements:
 - Bare metal reconfiguration
 - Boot from custom kernel with different kernel parameters
 - Fast reconfiguration, many different images, kernels, parameters
 - Hardware: accurate information and control over changes, performance counters, many cores
 - Access to same infrastructure for multiple collaborators

HPPAC’16 paper: “Systemwide Power Management with Argo”
CLASSIFYING CYBERSECURITY ATTACKS

- Jessie Walker & team, University of Arkansas at Pine Bluff (UAPB)
- Research: modeling and visualizing multi-stage intrusion attacks (MAS)
- Testbed requirements:
 - Easy to use OpenStack installation
 - A selection of pre-configured images
 - Access to the same infrastructure for multiple collaborators
CREATING DYNAMIC SUPERFACILITIES

- NSF CICI SAFE, Paul Ruth, RENCI-UNC Chapel Hill
- Creating trusted facilities
 - Automating trusted facility creation
 - Virtual Software Defined Exchange (SDX)
 - Secure Authorization for Federated Environments (SAFE)
- Testbed requirements
 - Creation of dynamic VLANs and wide-area circuits
 - Support for slices and network stitching
 - Managing complex deployments
DATA SCIENCE RESEARCH

- ACM Student Research Competition semi-finalists:
 - Blue Keleher, University of Maryland
 - Emily Herron, Mercer University
- Searching and image extraction in research repositories
- Testbed requirements:
 - Access to distributed storage in various configurations
 - State of the art GPUs
 - Easy to use appliances and orchestration
ADAPTIVE BITRATE VIDEO STREAMING

- Divyashri Bhat, UMass Amherst
- Research: application header based traffic engineering using P4
- Testbed requirements:
 - Distributed testbed facility
 - BYOC – the ability to write an SDN controller specific to the experiment
 - Multiple connections between distributed sites
- https://vimeo.com/297210055

LCN’18: “Application-based QoS support with P4 and OpenFlow”
BEYOND THE PLATFORM: BUILDING AN ECOSYSTEM

- Helping hardware providers interact
 - Bring Your Own Hardware (BYOH)
 - CHI-in-a-Box: deploy your own Chameleon site

- Helping our user interact – with us but primarily with each other
 - Facilitating contributions of appliances, tools, and other artifacts: appliance catalog, blog as a publishing platform, and eventually notebooks
 - Integrating tools for experiment management
 - Making reproducibility easier

- Improving communication – not just with us but with our users as well
CHI-IN-A-BOX

- CHI-in-a-box: packaging a commodity-based testbed
 - First released in summer 2018, continuously improving

- CHI-in-a-box scenarios
 - Independent testbed: package assumes independent account/project management, portal, and support
 - Chameleon extension: join the Chameleon testbed (currently serving only selected users), and includes both user and operations support Part-time extension: define and implement contribution models
 - Part-time Chameleon extension: like Chameleon extension but with the option to take the testbed offline for certain time periods (support is limited)

- Adoption
 - New Chameleon Associate Site at Northwestern since fall 2018 – new networking!
 - Two organizations working on independent testbed configuration
REPRODUCIBILITY DILEMMA

Should I invest in making my experiments repeatable? Should I invest in more new research instead?

- Reproducibility as side-effect: lowering the cost of repeatable research
 - Example: Linux “history” command
 - From a meandering scientific process to a recipe
- Reproducibility by default: documenting the process via interactive papers

www.chameleoncloud.org
REPEATABILITY MECHANISMS IN CHAMELEON

- Testbed versioning (collaboration with Grid’5000)
 - Based on representations and tools developed by G5K
 - >50 versions since public availability – and counting
 - Still working on: better firmware version management

- Appliance management
 - Configuration, versioning, publication
 - Appliance meta-data via the appliance catalog
 - Orchestration via OpenStack Heat

- Monitoring and logging

However… the user still has to keep track of this information
KEEPING TRACK OF EXPERIMENTS

- Everything in a testbed is a recorded event... or could be
- The resources you used
- The appliance/image you deployed
- The monitoring information your experiment generated
- Plus any information you choose to share with us: e.g., “start power_exp_23” and “stop power_exp_23

- Experiment précis: information about your experiment made available in a “consumable” form
REPEATABILITY: EXPERIMENT PRÉCIS

- OpenStack services
- Instance monitoring
- Infrastructure monitoring
- User events
- Experiment précis
- Store and share
- Orchestrator (Heat)

www.chameleoncloud.org
INTERACTIVE PAPERS

- What does it mean to document a process?
- Some requirements
 - Easy to work with: human readable/modifiable format
 - Integrates well with ALL aspects of experiment management
 - Bit by bit replay – allows for bit by bit modification (and introspection) as well – element of interactivity
 - Support story telling: allows you to explain your experiment design and methodology choices
 - Has a direct relationship to the actual paper that gets written
 - Can be version controlled
 - Sustainable, a popular open source choice

- Implementation options
 - Orchestrators: Heat, the dashboard, and OpenStack Flame
 - Notebooks: Jupyter, NextJournal, and others
CHAMELEON JUPYTER INTEGRATION

- Combining the ease of notebooks and the power of a shared platform
 - Storytelling with Jupyter: ideas/text, process/code, results
 - Chameleon shared experimental platform

- JupyterLab server for our users
 - Just go to jupyter.chameleoncloud.org and log in with your Chameleon credentials

- Chameleon/Jupyter integration
 - Interfaces: python and bash for all the main testbed functions

- Templates of existing experiments

 Screencast of a complex experiment: https://vimeo.com/297210055
SHARING, EXPERIMENTING, LEVERAGING

- Sharing Jupyter notebooks in Chameleon
 - Sharing with your project members via Chameleon object storage
 - Publish to github for versioning and sharing in wider circle
 - Informally: send via email
 - Challenges ahead: more flexible sharing policy implementation, better integration with github to support more publishing and sharing

- Automating experiments with Jupyter

- Important educational tool: start with a simple example and keep developing
IN THE TUTORIAL TOMORROW

- Instructional examples and artifacts
 - Slides, appliances/images, orchestration templates, Jupyter notebooks
- Introduction to Chameleon
 - Chameleon/cloud basics: how to create instances, how to snapshot them, how to assign public IPs to your deployed instances, etc.
- Advanced Cloud Computing topics
 - Cloud orchestration: orchestrated deployment of multiple instances, contextualization, orchestration templates and tools, examples: Hadoop
 - Networking in the cloud: multi-tenant networking, DirectConnect and stitchports, etc.
 - Managing data in the cloud: instance storage, persistent volumes, and object store, best practices
PARTING THOUGHTS

- Chameleon is a cloud (as in: chameleoncloud.org ;-)
 - ...but a special cloud with support for advanced cloud computing research
- Physical environment: Chameleon is a rapidly evolving experimental platform
 - Originally: “Adapts to the needs of your experiment”
 - Now also: “Adapts to the needs of its community and the changing research frontier”
- Towards an Ecosystem: a meeting place of users and providers sharing resources and research
 - Testbeds are more than just experimental platforms
 - Common/shared platform is a “common denominator” that can eliminate much complexity that goes into systematic experimentation, sharing, and reproducibility
- Be part of the change: tell us what capabilities we should provide to help you share and leverage the contributions of others!