

www.chameleoncloud.org

EXPERIMENTING FROM EDGE TO CLOUD

Kate Keahey

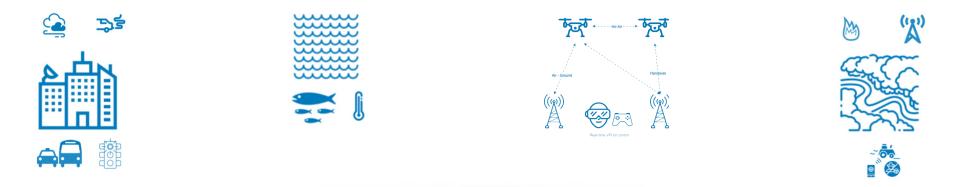
Mathematics and CS Division, Argonne National Laboratory

CASE, University of Chicago

keahey@anl.gov

October 6th, 2021 IC2E 2021 9th IEEE International Conference on Cloud Engineering

SCIENTIFIC INSTRUMENTS

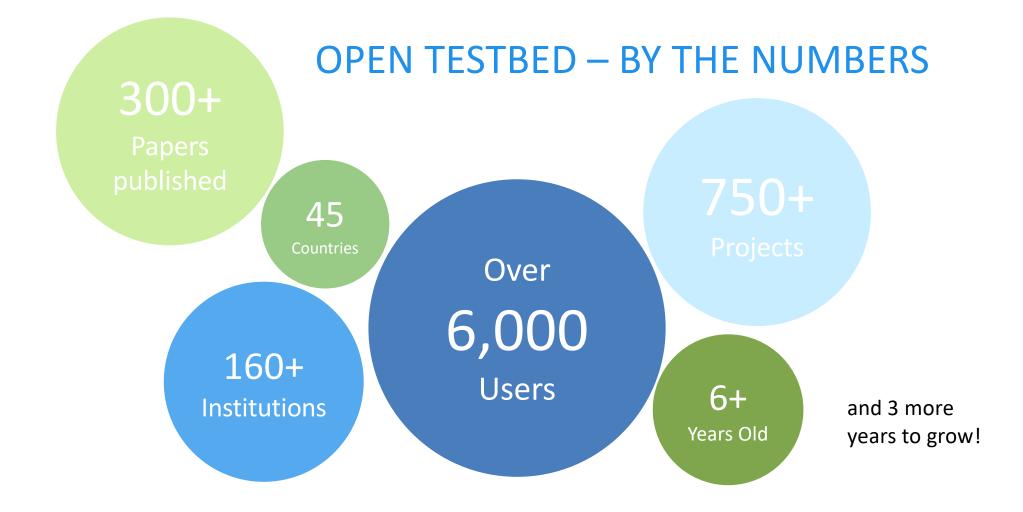

What scientific instruments do Computer Scientists need?

Innovative and diverse hardware, breadth of deployment, freedom to touch and measure every aspect of configuration and behavior.

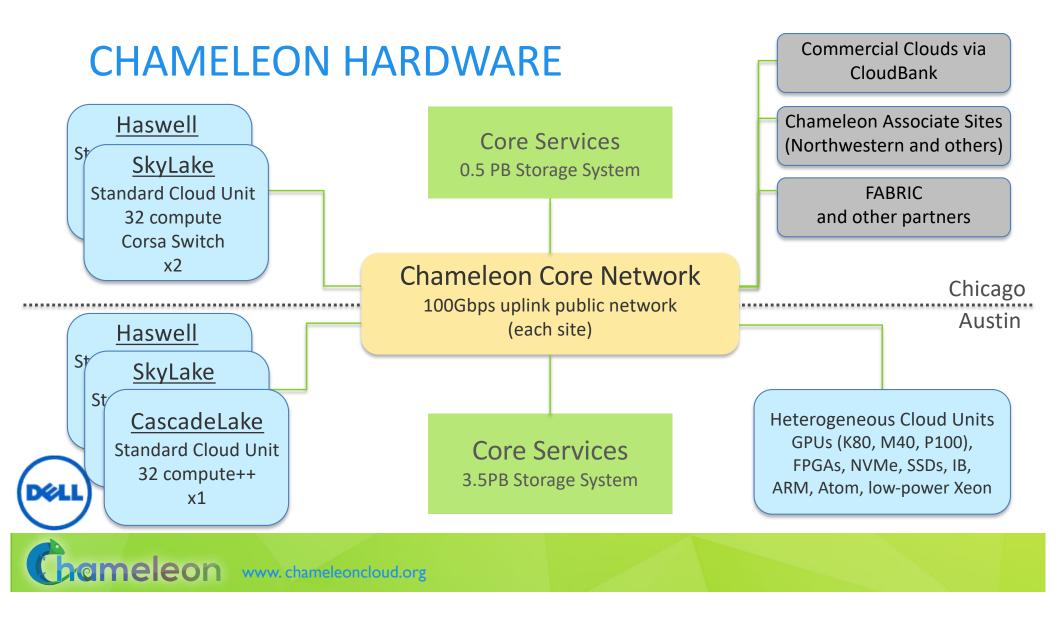
Constantly evolving!

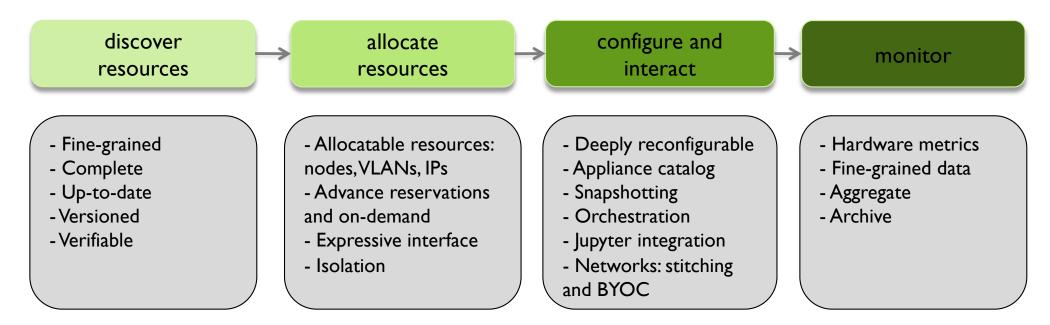
THE EMERGENCE OF IOT/EDGE

Challenges in connectivity, scale, security, dynamicity, resilience, data and information workflows, management – and many others!



CHAMELEON IN A NUTSHELL


- ▶ We like to change: a testbed that adapts itself to your experimental needs
 - Deep reconfigurability (bare metal) and isolation but also a small KVM cloud
 - power on/off, reboot, custom kernel, serial console access, etc.
- Balance: large-scale versus diverse hardware
 - Large-scale: ~large homogenous partition (~15,000 cores), ~6 PB of storage originally distributed over 2 sites (UC, TACC) connected with 100G network
 - Diverse: ARMs, Atoms, FPGAs, GPUs, Corsa switches, etc.
 - CHI-in-a-Box sites at Northwestern, NCAR, IIT, and other places
- Cloud++: CHameleon Infrastructure (CHI) via mainstream cloud tech
 - Powered by OpenStack with bare metal reconfiguration (Ironic) + "special sauce"
 - Blazar contribution recognized as official OpenStack component
- Reproducibility, repeatability and sharing
 - Packaging (via Jupyter), sharing, discovering, and publishing experiments

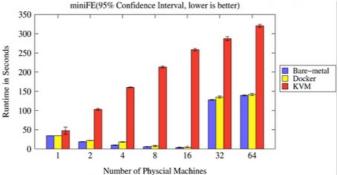


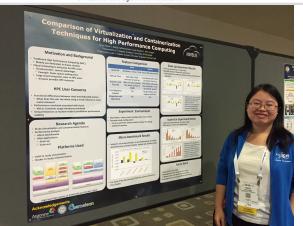
CHAMELEON HARDWARE (DETAILS)

- "Start with large-scale homogenous partition"
 - 12 Haswell racks, each with 42 Dell R630 compute servers with dual-socket Intel Haswell processors (24 cores) & 128GB RAM and 4 Dell FX2 storage servers with 16 2TB drives each; Force10 s6000 OpenFlow-enabled switches 10Gb to hosts, 40Gb uplinks to Chameleon core network
 - > 3 SkyLake racks (32 nodes each); Corsa (DP2400 & DP2200), 100Gb uplinks to core network
 - CascadeLake rack (32 nodes), 100Gb ulpinks to Chameleon core network
 - Allocations can be an entire rack, multiple racks, nodes within a single rack or across racks (e.g., storage servers across racks forming a Hadoop cluster)
- Shared infrastructure
 - > 3.6 (TACC) + 0.5 (UC) PB global storage, 100Gb Internet connection between sites
- "Graft on heterogeneous features"
 - Infiniband with SR-IOV support, High-mem, NVMe, SSDs, P100 GPUs (total of 22 nodes), RTX GPUs (40 nodes), FPGAs (4 nodes)
 - ARM microservers (24) and Atom microservers (8), low-power Xeons (8)
- Coming in Phase 3: upgrading Haswells to CascadeLake and IceLake + AMD, new GPUs and FPGAs, more and newer IB fabric, variety of storage options for disaggregated hardware experiments, composable hardware (LiQid), networking (P4, integration with FABRIC), IoT devices -- and strategic reserve

CHI EXPERIMENTAL WORKFLOW

Authentication via federated identity, accessed via GUI, CLI and python/Jupyter

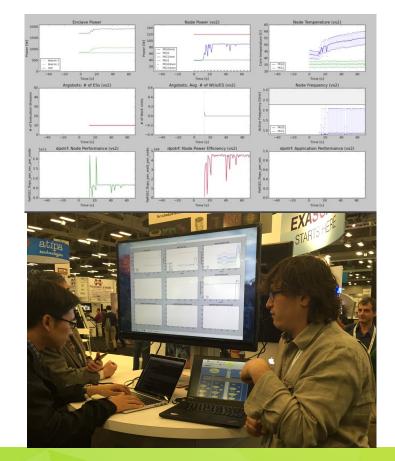

Paper: "Lessons Learned from the Chameleon Testbed", USENIX ATC 2020



VIRTUALIZATION OR CONTAINERIZATION?

- Yuyu Zhou, University of Pittsburgh
- Research: lightweight virtualization
- Testbed requirements:
 - Bare metal reconfiguration, isolation, and serial console access
 - The ability to "save your work"
 - Support for large scale experiments
 - Up-to-date hardware

SCI5 Poster: "Comparison of Virtualization and Containerization Techniques for HPC"



ameleon www.chameleoncloud.org

EXASCALE OPERATING SYSTEMS

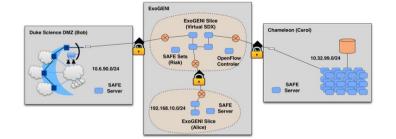
- Swann Perarnau, ANL
- Research: exascale operating systems
- Testbed requirements:
 - Bare metal reconfiguration
 - Fast boot from custom kernel with different kernel parameters
 - Fast reconfiguration, many different images, kernels, parameters
 - Hardware: accurate information and control over changes, performance counters, many cores
 - Access to same infrastructure for multiple collaborators

HPPAC'16 paper: "Systemwide Power Management with Argo"

Chameleon www.chameleoncloud.org

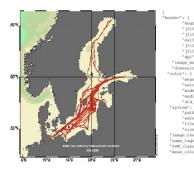
CLASSIFYING CYBERSECURITY ATTACKS

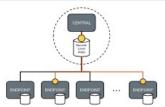
- Jessie Walker & team, University of Arkansas at Pine Bluff (UAPB)
- Research: modeling and visualizing multi-stage intrusion attacks (MAS)
- Testbed requirements:
 - Easy to use OpenStack installation
 - A selection of pre-configured images
 - Access to the same infrastructure for multiple collaborators



CREATING DYNAMIC SUPERFACILITIES

- NSF CICI SAFE, Paul Ruth, RENCI-UNC Chapel Hill
- Creating trusted facilities
 - Automating trusted facility creation
 - Virtual Software Defined Exchange (SDX)
 - Secure Authorization for Federated Environments (SAFE)
- Testbed requirements
 - Creation of dynamic VLANs and wide-area circuits
 - Support for network stitching
 - Managing complex deployments





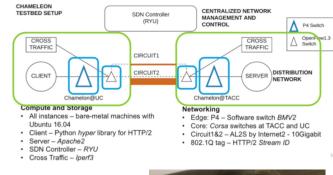
Chameleon www.chameleoncloud.org

DATA SCIENCE RESEARCH

- ACM Student Research Competition semifinalists:
 - Blue Keleher, University of Maryland
 - Emily Herron, Mercer University
- Searching and image extraction in research repositories
- Testbed requirements:
 - Access to distributed storage in various configurations
 - State of the art GPUs
 - Easy to use appliances and orchestration

Our Method: hierarchical hybrid featuring "collapsed" secondlevel index (SLI)

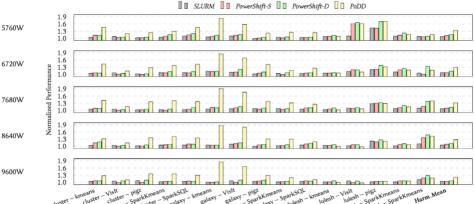

- SLI references endpoints, not docs, and contains a summary subset of terms
- + Some storage burden on endpoints, but still very low per endpoint
- + Lower storage burden on central servers



Chameleon www.chameleoncloud.org

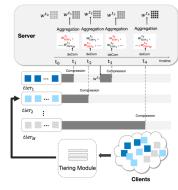
ADAPTIVE BITRATE VIDEO STREAMING

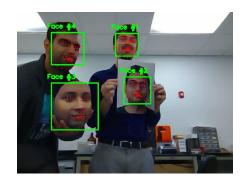
- Divyashri Bhat, UMass Amherst
- Research: application header based traffic engineering using P4
- Testbed requirements:
 - Distributed testbed facility
 - BYOC the ability to write an SDN controller specific to the experiment
 - Multiple connections between distributed sites
- https://vimeo.com/297210055



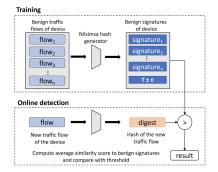
Gameleon www.chameleoncloud.org

POWER CAPPING


- Harper Zhang, University of Chicago
- Research: hierarchical, distributed, dynamic power management system
 for dependent applications
- Testbed requirements:
 - Support for large-scale experiments
 - Complex appliances and orchestration (NFS appliance)
 - RAPL/power management interface
- Finalist for SC19 Best Paper and Best Student Paper
 - Talk information at bit.ly/SC19PoDD
- SC'19: "PoDD: Power-Capping Dependent Distributed Applications"



Gameleon www.chameleoncloud.org


FROM CLOUD TO EDGE WITH CHAMELEON

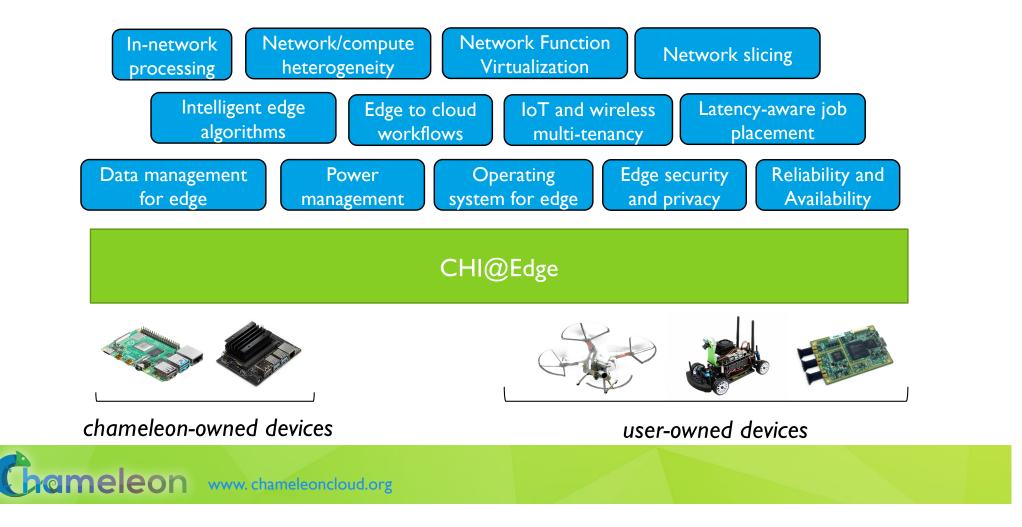
federated learning

biometrics

network traffic fingerprinting for IoT devices

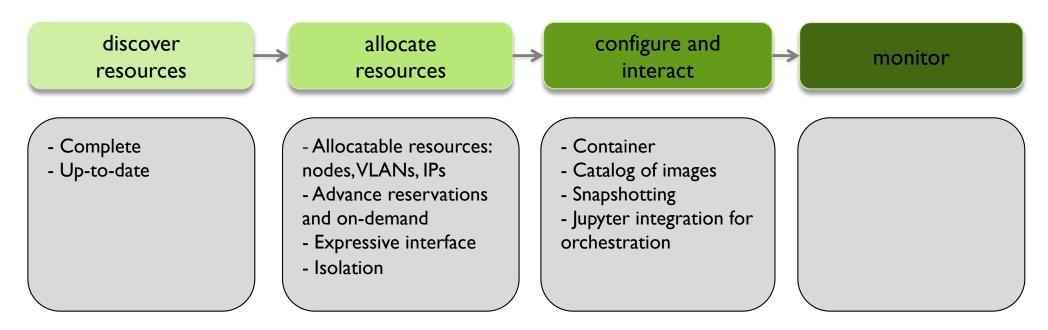
- Increasingly more Chameleon project applications working on IoT/edge
- Simulation/emulation don't always provide the answer: What are the impacts of this approach on power management on edge device? How will the performance transfer to edge? Can we measure the impact of distribution/networking for edge/cloud applications?
- Goal: "realistic edge to cloud experiments from one Jupyter notebook"

WHAT DOES AN EDGE TESTBED LOOK LIKE?


Not at all like a cloud! Location, location, location! Not server-class! IoT: cameras, actuators, SDRs! And many other challenges!

- CHI@Edge: all the features you know and love plus
 - Reconfiguration via container deployment
 - Support for peripherals based on an extensible plug-in model
 - Mixed ownership model via an SDK with devices, virtual site, and restricted sharing
 - Chameleon@Edge Community Workshop in September 2021 https://chameleoncloud.org/chiedge-community-workshop/

WHAT DOES AN EDGE TESTBED LOOK LIKE?


BUILDING CHI@EDGE

Chameleon www.chameleoncloud.org

CHI@EDGE EXPERIMENTAL WORKFLOW (PREVIEW)

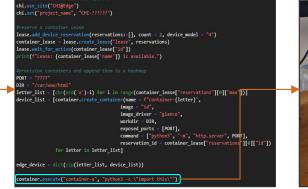
Authentication via federated identity, accessed via GUI, CLI and python/Jupyter

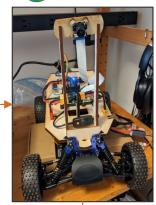
SHARING DEVICES THROUGH CHI@EDGE

- CHI@Edge SDK: fully automate the process of enrolling a device into CHI@Edge
- Support for restricted leases
 - > You operate your device for your community and leverage our expertise on sharing
 - Your users get seamless access to the devices you operate for them + Chameleon + partnerships
- Access reasonable hardware properties e.g., GPUs
- Peripheral devices
 - Standard camera modules, GPIO, SDR
 - Extensible framework for integrating new devices
- CHI@Edge in a Box in development

AUTONOMOUS CARS WITH CHI@EDGE

► Goal:


- Teach machine learning and systems concepts using remote autonomous cars
- Challenges:
 - Control the cars remotely: manual workflows require lots of teacher effort
 - Iterate on code while learning and exploring
 - Collect, store, and process large datasets
- CHI@Edge:
 - Car reservations
 - Access through JupyterHub
 - Provides consistent network connection
 - Deploy code and collect results with repeatable workflows


Rick Anderson Virtual Worlds, Director Rutgers University

Chameleon

upyter

ARA: WIRELESS LIVING LAB FOR SMART & CONNECTED RURAL COMMUNITIES

- ARA objectives
 - Enable research to achieve a factor of 10+ reduction in broadband cost and make rural broadband as affordable as urban broadband!
 - Support broadband use cases for rural communities
- ARA wireless living lab
 - Deploy advanced wireless platforms in Central Iowa (>600 square miles); capture systems and application and community contexts of rural broadband
 - Mainstream open-source platforms for living lab management and experimentation: OpenStack, CHIin-a-Box & CHI@Edge, ONF (SD-RAN, SD-CORE, ONOS), srsRAN, OpenAirInterface etc
 - CHI@Edge: collaborating on spectrum reservations for management of wireless networks and CHI@Edge in a Box

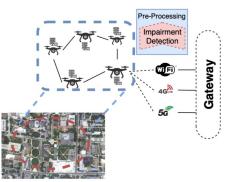
Hongwei Zhang, ARA PI Iowa State University

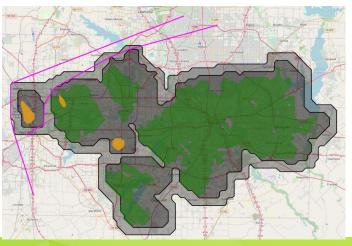
Location and Interior view of ISU Beef Nutrition Research Farm

EDGE FOR MARINE BIOLOGY

- Goal: map existing fish populations and thereby understand better how pollution impacts their habitat and the general Biscayne Bay ecosystem
- Challenges: What is the best cloud/edge strategy for collecting and analyzing data from the autonomous vehicle (AV)? How does the resolution of video data and quality of network connection influence them?
- CHI@Edge: using CHI@Edge for developing edge to cloud data processing workflows via Jupyter notebooks

Kevin Boswell, Leonardo Bobadilla, and Jonathan Tsen Florida International University




FLYNET: AN 'ON-THE-FLY' PROGRAMMABLE END-TO-END NETWORK-CENTRIC PLATFORM

- Architecture and tools that support edge computing devices in scientific workflows
- Critical for low latency and ultra-low latency applications: e.g., drone video analytics and route planning for drones
- Challenges: integration of compute and networking infrastructure, in-network processing, end-to-end monitoring, workflow management (Pegasus)
- CHI@Edge
 - Use for edge computing experiments
 - Provide experiments that can be reproduced by other researchers
 - FlyNet to provide tools to allow researcher to include CHI@Edge in their workflows

Mike Zink FlyNet Pl U of Mass, Amherst

Chameleon www.chameleoncloud.org <u>http://www.ecs.umass.edu/mi360world/flynet/index.html</u>

TESTBEDS AS SHARING PLATFORM

- Can experiments be as sharable as papers are today?
- Instruments held in common are a reproducibility baseline
- Clouds: sharing experimental environments
 - Disk images, orchestration templates, and other artifacts
- What is missing?
 - Telling the whole story: hardware + experimental container + experiment workflow + data analysis + story literate programming
 - The easy button: it has to be easy to package, easy to repeat, easy to find, easy to get credit for, easy to reference, etc.
 - Nits and optimizations: declarative versus imperative, transactional versus transparent

Paper: "The Silver Lining", IEEE Internet Computing 2020

Chameleon www.chameleoncloud.org

PRACTICAL REPRODUCIBILITY IN CHAMELEON

Hardware and hardware versions

- >105 versions over 5 years
- Expressive allocation
- Images and orchestration
 - >130,000 images, >35,000 orchestration templates and counting
- Packaging and repeating: integration with JupyterLab
- Share, find, publish and cite: Trovi and Zenodo

Gameleon www.chameleoncloud.org

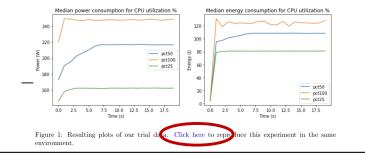
PACKAGING SHARABLE EXPERIMENTS

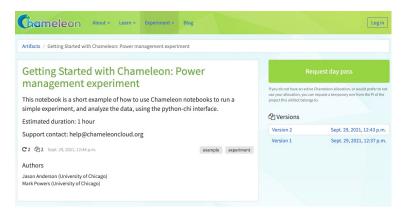
Experimental storytelling: ideas/text, process/code, results

Complex Experimental containers

- Repeatability by default: Jupyter notebooks + Chameleon experimental containers
 - JupyterLab for our users: use jupyter.chameleoncloud.org with Chameleon credentials
 - Interface to the testbed in Python/bash + examples (see LCN'18: <u>https://vimeo.com/297210055</u>)
 - Chameleon Trovi: service that provides sharing, versioning, storing and Discovery of experiments

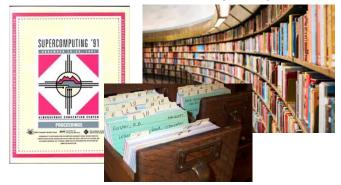
Paper: "A Case for Integrating Experimental Containers with Notebooks", CloudCom 2019




SHARING EXPERIMENTS WITH DAYPASS

- Authors create a subproject with multiple short-term leases (long enough to reproduce)
- Readers click through data of a published experiment, request a daypass, and reproduce either the experiment or data analysis

The data recorded in our trial runs is plotted in Figure 1. We find that there is a ramp up period for energy usage, while the program starts. Additionally, we see that the jump in both power and energy usage from 25% to 50% utilization is larger than the jump from 50% to 100% utilization.



Chameleon www.chameleoncloud.org

PUBLISHING EXPERIMENTS

Familiar research sharing ecosystem

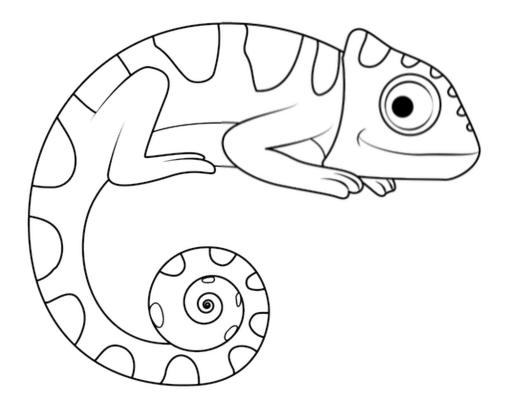
- Digital publishing with Zenodo: make your experimental artifacts citable via Digital Object Identifiers (DOIs) – and executable via Chameleon daypass
- Integration with Zenodo
 - Export: make your research citable and discoverable
 - Import: access a wealth of digital research artifacts already published

PARTING THOUGHTS

- Constantly in motion: scientific instruments are laying down the pavement as science walks on it
- Testbed inversion: from cloud to edge
 - Before: expensive provider-owned hardware as the main draw
 - Now: user-owned inexpensive hardware configured via a variety of mechanisms
- Testbeds as effective sharing and connecting mechanisms
- Sharing your research is more important than ever
 - Biggest benefit in emergent area
 - Incentivized community
- It takes a village!

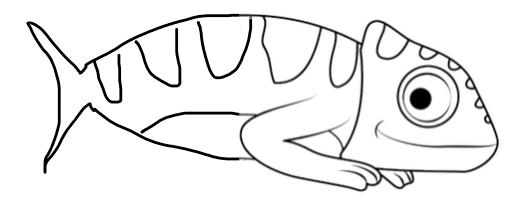
Think Big! (with the help of a small reptile)

www.chameleoncloud.org



JOIN US FOR THE SUMMER OF CHAMELEON!

- June 2021: CHI@Edge releases, shared hardware (nvidia nanos and raspberry pis), community webinars
- July 2021: "bring your own device" with attestations/SLAs, peripherals, support for limited sharing
- ► To use: <u>https://www.chameleoncloud.org/experiment/chiedge/</u>
- ► To learn: <u>https://www.youtube.com/user/ChameleonCloud/videos</u>
- Chameleon-edge-users mailing list: <u>https://groups.google.com/g/chameleon-edge-users?pli=1</u>
- Help us build a better testbed!



HOW DOES IT WORK?

HOW DOES IT WORK?

OpenStack adaptation:

reconfiguration via container deployment, invalidating datacenter assumptions

OpenStack interfaces:

advance reservations, single-tenant isolation, isolated networking, IP assignment, snapshotting

Existing user interface:

identity federation, python-chi, integration with Jupyter, etc.

