Research Methodology

NSFCloud breakout session

Warren Smith and Eric Eide
Participants

- 21+ people
- Many doing systems research
- A few applications research
- NSFCloud builders
Research Experiment Phases

• Prepare
• Execute
• Monitor and measure
• Data storage & analysis
• Traces & workloads
• Sharing
Prepare Experiments

• A lot of work to prepare an experiment
 – Evolve an environment
 – Scale the environment
 – Prepare the real experiment

• Make this process as convenient as possible
 – On-demand access to small-scale resources
 • Longer wait times are acceptable for larger experiments
 – Easy and quick access to resources (e.g. virtual machines)
 – Easily transition from virtual to physical
 • VM image -> node image?
 • Encourage use of ansible/puppet/chef or similar
 • Container technologies?
Execute Experiments - Describe Environment

• Level of detail?
 – From a class of resources
 – Detailed characteristics
 – Exact nodes

• Detailed information is important
 – E.g. hardware changes
Execute Experiments - Verify Environment

• Much more interest from testbed builders than from users!
 – Users interested in the end (the environment they ask for)

• Level of detail to verify
 – Tradeoff thoroughness vs time to execute
 – Verify what the user asked for, at least (# cores, memory, disk, etc.)
 – Could verify much deeper (e.g. performance benchmarks)

• Standardize benchmarks/tests?
Execute Experiments - Modify Environment

• Load injection, fault injection
• Users have their own tools
• (very brief discussion)
Monitor and Measure

• Important to do this throughout the systems
 – Include tools in standard OS images
 – Access to data gathered outside of the OS
 • Network, power, heat

• Availability of data?
 – To the user of the relevant components
 – To other users and publicly?
 • Useful data
 • Potential concerns about making data public before the user can publish
 – Mitigated by some amount of anonymity (public won’t know who was using what components when)
Data Storage and Analysis

• Store experimental data for analysis
• Users plan to use their own scripts/tools & experts to analyze
 – Interest in sharing
• (brief discussion)
Traces and Workloads

• Traces and workloads from production environments would be very useful
 – Use to drive experiments
 – Must describe in detail the configuration of the system they were gathered from
 – Such workloads from non-production environments can be misleading

• Traces from the NSFCloud testbeds also useful
 – Provide detailed information about experiments
 – Compare extended or related work
Sharing

• Lots of interest in being able to share information and collaborate
• Repeatability, extensibility
 – Experiment configurations
 – Experimental data
• Publishing results
 – Refer to config/data in paper
• Community building
 – Publications & project information
 – Tips and tricks
 – Data analysis tools