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Abstract—Computational notebooks have gained much pop-
ularity as a way of documenting research processes; they
allow users to express research narrative by integrating ideas
expressed as text, process expressed as code, and results in one
executable document. However, the environments in which the
code can run are currently limited, often containing only a
fraction of the resources of one node, posing a barrier to many
computations. In this paper, we make the case that integrating
complex experimental environments, such as virtual clusters
or complex networking environments that can be provisioned
via infrastructure clouds, into computational notebooks will
significantly broaden their reach and at the same time help
realize the potential of clouds as a platform for repeatable
research. To support our argument, we describe the integration
of Jupyter notebooks into the Chameleon cloud testbed, which
allows the user to define complex experimental environments
and then assign processes to elements of this environment
similarly to the way a laptop user may switch between different
desktops. We evaluate our approach on an actual experiment
from both the development and replication perspective.

1. Introduction

Scientific computations, whether large-scale simulations,
just-in-time analytics, or performance studies, each represent
a computational experiment, which may have to be repeated
or replicated [1] for purposes of validation, variation, or
other forms of evaluating and leveraging scientific con-
tribution. These computational experiments take place in
experimental containers that define the environment of the
computation in terms of its configuration and makeup (i.e.,
compute nodes, networks, or storage resources as well as
software configuration required by the computation). Such
experimental containers may be complex, and thus difficult
to create. Changes in their configuration may introduce
inconsistencies, lead to wrong results, or even make re-
peating a computation impossible. Repeating or replicating
computational experiments thus relies on ensuring that its
experimental container is configured correctly every time.

The task of documenting an experimental process in
such a way that it can be shared and repeated has been

greatly facilitated by the advent of computational notebooks,
which have already proven themselves instrumental in com-
municating scientific discoveries [2]. Their success lies in
the ability to provide a link between ideas (explained in
text), process (captured as code), and results in the form
of graphs, pictures, or other artifacts. They have however a
significant limitation in that the execution environment of a
notebook is constrained to a small set of possibilities, such
as preconfigured virtual machines or software containers,
and often only granted a small fraction of a system’s full
resources. While sufficient for many generic computations,
it falls short of being able to support large-scale scientific
experiments that increasingly require complex experimen-
tal containers composed of diverse and powerful resources
distributed over complex topologies.

The challenge of supporting such environments has
been addressed by infrastructure clouds, from commercial
resources such as Amazon Web Services (AWS) [3] to
open testbeds such as Chameleon [4]: they allow users to
create experimental containers implemented using isolation
vehicles from virtual machines to bare metal and from
nodes to networks. Furthermore, the digital artifacts that
represent such containers—such as images and orchestra-
tion templates [5] that marshal those images into complex
environments such as virtual clusters—can be shared and
used by others to reestablish the experimental environment
within a given platform. This makes the task of replicating
computational experiments significantly easier; but the pro-
cess that creates those digital artifacts is still complex and
thus poses a barrier to publishing them in the first place.

In this paper, we propose a way to integrate notebooks–
a highly effective tool for the description of experimental
process–and experimental containers, capable of providing
complex experimental environments, to mutual benefit. On
one hand, dynamically and accurately deployed experimen-
tal containers based on shared artifacts developed for clouds
or testbeds can address a deficiency of notebooks in terms of
documenting the experimental process. On the other hand,
notebooks can provide a convenient and intuitive tool for
utilizing such containers in a way that more closely resem-
bles the creative process and provides a way to introduce
variation in both the container makeup and the steps of



experimentation. To support our argument, we describe the
integration of Jupyter [6] notebooks with the Chameleon
testbed and a design pattern that leverages this integration
to allow the user to define arbitrarily complex experimental
containers and then assign processes to elements of this
container similarly to the way a laptop user may switch
between different desktops. We evaluate our approach on an
actual experiment from both the development and replication
perspective to illustrate how it can help more investigators
structure more complex experiments interactively, and allow
for their replication and controlled variation.

This paper is organized as follows. In Section 3 we
define experimental containers, describe their properties,
and discuss their implementation across a range of testbeds.
In Sections 4 and 5 we explain how we integrated this
concept of a container into notebooks and discuss our im-
plementation of integration of Jupyter notebooks with the
Chameleon testbed. In Section 6, we validate our proposal
in the context of a demanding distributed experiment and
explain its benefits and limitations.

2. Related Work

The value of interweaving ideas (text) and process (code)
in one document was first explored in an approach called
literate programming [7]. Interactive notebooks follow the
same pattern, but additionally allow the user to pause,
rewind, replay and resume a computation at any point,
supporting a more organic workflow. Additionally, the user
can work with rich, potentially interactive visualizations.
The two predominant implementations of these interactive
notebooks are Wolfram Mathematica [8] and IPython (later
named Project Jupyter) [9]. Despite Mathematica’s longer
existence, Jupyter has better penetration within the aca-
demic community, due to leveraging a large open-source
development community and providing a web-based in-
terface requiring no specialized client tools. The web in-
terface spawned several managed “Notebook-as-a-Service”
platforms to aid in reproducibility, such as CodeOcean [10],
WholeTale [11], Nextjournal [12], Binder [13], Wolfram
Cloud [14], Azure Notebooks [15], Amazon EMR [16],
and Google Colab [17]. Pangeo [18] is recent development
that applies this pattern to science problems across various
domains. Many researchers have experimented with using
Jupyter notebooks specifically to improve reproducibility
[19], [20], [21], [22], [23].

While compelling in their integrative approach, exist-
ing notebook implementations are difficult to use with ad-
vanced configurable hardware environments. On managed
platforms, the execution environment of a notebook is lim-
ited to a small set of possibilities, such as a virtual machine
[24] or Docker [25] container. Typically, a specification
of the hardware provided is not visible to the user. This
approach trades flexibility for simplicity, and is well-suited
to research where specifics of hardware configuration are
less important e.g., a data processing workflow or sim-
ulation. To get around this limitation, a researcher may
need to provision their own interactive server that places

notebooks on hardware they control. This appraoch requires
additional operational knowledge and reduces the likelihood
of replicating the experiment results by requiring that future
researchers possess similar hardware.

A different approach is implemented by systems such as
Popper [26] and Sumatra [27] which express an experimen-
tal workflow that can be implemented across platforms in
a declarative form. However, the “process” of experimenta-
tion, when defined declaratively, requires understanding the
syntax and rules of different platforms and also creates chal-
lenges for an iterative workflow: declarative systems usually
do not have a mechanism for storing intermediate state,
and so are biased towards re-running the entire workflow
from start to finish. Besides this limitation, researchers find
complex scenarios hard to represent unless care and time
is taken to follow the declarative model from the beginning
[28], [29]. If a researcher makes the investment into such a
workflow, their exact process does indeed become reliable,
streamlined, and easy to repeat. However, it is still hard to
interact with and produce variation easily which is necessary
for exploring different inputs, configurations, and hypothe-
ses on the fly; in this context an imperative approach usually
works better.

3. Experimental Containers

Most computation takes place in the context of
a complex configuration of resources including not
only compute nodes, but potentially also accelerators,
networks, and storage. Recording and then replicating this
configuration is often not only complex and thus hard to do,
but also needs to be done accurately to ensure consistency
of results. The latter is particularly true of Computer
Science experiments in fields such power management or
performance variability, but can also affect other types
of computations. While virtualization techniques, such
as virtual machines or networks, addressed this problem
partially, we often need a generalized “container” that
extends the abstraction over a combination of multiple
resources working in concert. We describe below the
properties of such experimental containers and discuss
several implementations that satisfy them to various
degrees.

Isolation: The ability to faithfully replicate a result in a
shared environment often relies on the ability to control
interference from other users of the system, whether in
terms of configuration requirements or computational
noise they generate. In [30] we introduce the terms system
isolation, which presents to users an independent system (as
implemented in e.g., virtual machines (VMs) [24] or GENI
slices [31]) and allows them to configure an environment
unique to a computation, and performance isolation, which
ensures that the experimental container presents consistent
performance (as implemented via e.g., allocating bare metal
nodes). What specific type of isolation is required depends
on the nature of experiments run in a given container.



Expressiveness: It should be possible to describe an
experiment container such that it covers the broadest
possible range of different experimental configurations
(sometimes called “topologies”), that are both general (e.g.,
cover complex experimental configurations expressed in a
flexible manner), and precise (i.e., describe the required
resources with enough detail). This implies the ability to
map a container onto sets of platform resources according
to requirements ranging from very broad (e.g., “at least
2GBs of memory per allocated core”), to more specific
(e.g., “two nodes on the same rack”), to unique (e.g., “this
specific node”). Furthermore, the container description
should allow users to assemble nodes, networks, and other
units applying the broad and precise principle to all of
them.

Integration: A complex experiment container frequently
needs to combine resources of different types such that they
work as a coherent unit. For example, individual compute
resources may need to be combined into a cluster which
involves orchestrating a secure exchange of information
assigned at deployment time such as IP addresses or
security keys; this is accomplished by a technique called
contextualization [32] or by finalizing configuration when
this information becomes available. Multiple virtual
networks and wide-area circuits may need to be combined
into one virtual network; this is accomplished via stitching
[31]. Finally, resources of different types need to be
configured such that they work with each other in ways
that support the needs of an experiment.

Persistence: Once assembled and integrated, it is important
that an experimental container can be made persistent for at
least some amount of time allowing experimenters to save
their work such that the container can be redeployed. There
are two factors that affect the ability to persist a container:
fundamental/technical factors, i.e., the ability to accurately
represent the environment such that it can be reestablished
(e.g., snapshotting), and policy factors, which guide how
long the hardware, firmware and software needed for the
environment to be reestablished may be available. While the
former is a property of a platform, the latter is an economic
decision guided by cost considerations (e.g., backwards
compatibility of testbed services) on one hand, and specific
needs on the other (e.g., replicating an experiment exactly
may be most valuable for a period of review only). In
fact, as time passes it is often the case that the interest
in reproducibility is greater than replicability/repeatability
[33], [34].

Shareability: To replicate, multiple users and user groups
must have access to resources compatible with the
experimental artifacts that the container relies on, such
as appliances/images or orchestration templates. This
allows reviewers to easily reestablish experiments in
papers submitted by authors and enables researchers to
compare work done by their colleagues. Open access is
thus a critical requirement. While the reach of experiments

(via shareability of the containers) could be extended by
compatibility of various platforms, there is an inherent
tradeoff between generalization and innovation: diverse
individual platforms encourage rapid development of new
features as science-driven experimental needs evolve; strict
portability requirements slow this development.

3.1. Experimental Containers in Chameleon

The Chameleon open testbed serves the needs of Com-
puter Science community; thus its container implementation
reflects this community’s needs. Performance and system
isolation needed to support studies of e.g., performance
variability or power management strategies are supported
by allowing users to provision and reconfigure bare metal
servers; users can also provision configurable layer-2 net-
works for exclusive use. Chameleon’s (Blazar [35]) service,
used for resource allocation, supports expressive constraints-
based descriptions allowing users to allocate resources from
nodes to networks based on both broad (e.g., collection of
nodes within the same physical rack), and detailed con-
straints (e.g., specific node) descriptions. Allocating collec-
tions of resources and integrating them (e.g., provisioning a
network topology and server configurations over multiple
sites, and contextualizing them) is handled by the (Heat
[36]) orchestration service which takes an orchestration
template specifying the desired configurations as input. The
persistence aspect is addressed by support for snapshot-
ting disk images, and testbed versioning that tracks (slow)
hardware and firmware changes so that users can integrate
them into their experimental strategy. Finally, the testbed is
open to all CS researchers, so that these persisted artifacts
can be shared with wider community, and supports such
sharing via mechanisms such as e.g., a catalog of images
and orchestration templates.

3.2. Other Implementations

Different platforms support different types of experi-
mental containers with varying levels of support for the
properties outlined above, as necessary for the needs of their
respective communities.

Open Computer Science testbeds often specialize in the
support for a specific type of research such as e.g., GENI
[31] and PlanetLab [37] for networking, COSMOS [38] and
POWDER [39] for wireless, and Grid5000 [40], and Cloud-
Lab [41] for cloud computing and datacenter management
and support experimental containers that are relevant to the
needs of their respective communities. Of those Grid5000
and CloudLab are most similar to Chameleon: both sup-
port bare metal provisioning of resources, i.e., performance
isolation for compute nodes and Chameleon and CloudLab
support the GENI concept of slicing [31] to create virtual
networks. The testbeds are typically accessible to the broad
scientific community making sharing of artifacts within that
community possible.



Commercial clouds such as Amazon Web Services and
Google Cloud Platform provide a viable alternative for
experimental containers. However, while bare metal provi-
sioning is in ascendance notably in AWS [42], on the whole
these clouds offer weaker isolation as they predominantly
rely on virtualization. In addition, thought they do support
building blocks for network isolation such as DirectConnect
[43] and ExpressConnect [44], in practice those are difficult
to access for individual users. Limited control over hardware
mapping makes some experiments difficult or impossible
to express, and no insight into hardware versioning makes
managing persistence difficult. While their shareability is in
principle higher than open testbeds, in practice this is often
unrealized due to high monetary cost [45].

3.3. Discussion: Building Experimental Containers

Creating an experimental environment is one thing;
doing it easily and in a way that supports the creative
process of both the original experimenter and the replicating
experimenter is another.

A common solution to the problem of creating a complex
experimental environment is a mechanism that allows a user
to define the desired end-state of an experimental container
declaratively via a template using a special grammar, such as
XML used by RSpec [31] on GENI and CloudLab, YAML
used by Heat [36] on Chameleon and other OpenStack
clouds, or AWS CloudFormation [46] in the realm of com-
mercial clouds. This is often referred to as orchestration
and allows users to express the shape of an experimental
container in terms of resources (i.e., nodes, networks, etc.)
that they will use, provides mechanisms for integration, as
well as a way to start an execution on boot, theoretically
making the execution of the entire experiment an extension
of container deployment.

However, while orchestration is currently the most pop-
ular solution for building complex experimental containers,
it ultimately fails in the support for creative process critical
to reproducibility. For one, orchestration is not interactive:
it is effectively a transaction, which either commits, ob-
taining the desired state, or rolls back. Users have limited
ability to influence the intermediate state, adjust variables,
or rearrange the topology, and are forced into workflows
that require re-running the entire transaction, which can
take significant time. This illuminates another problem:
the orchestration syntax is typically declarative, while the
creative process is expressed imperatively (“first, I did this,
then I did this.”). Finally, the existing orchestration tools
and disk images have limited portability so that while it is
advantageous to be able to use the same tool to define both
the experimental container and the experimental process,
there are also advantages to being able to separate them
when needed.

We take two lessons from all of this. First, a more
human-centric approach is desired: while an experimental
container is inherently a product, creating it is still a pro-
cess. Thus, it should be possible to both reestablish the
experimental container as a transaction and introspect, and
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Figure 1. An illustration of our approach: the notebook contains sections
setting up a complex distributed experimental container composed of nodes
and networks; the experimental steps are enacted on relevant parts of the
container.

possibly vary the process. Second, a higher-level abstraction
of the experiment being performed is necessary, one that
enables the execution of the experiment to be reproduced
without modification, even if the instantiation of the exper-
iment differs across platforms.

4. Approach

Our approach combines the concepts of experimental
containers and interactive notebooks to create a new design
pattern that divides the code blocks in a notebook into
three categories according to the role they play in the
experiment: container blocks are devoted to the creation
and configuration of experimental container, execution
blocks perform a series of experiment steps within that
container, and presentation blocks analyze and visualize
results. Figure 1 shows a simple example where a notebook
is split into three sections, each containing one category of
blocks.

Container blocks contain instructions that construct
the experimental container entities on the target platform.
Because this involves performing actions on behalf of the
end-user, integration with the platform via an authenticated
API is critical. Elements of the experimental container
can be created in a number of ways: via an orchestration
template packaged alongside the notebook, or via an
imperative approach that iteratively builds up the container
environment with a series of API calls (e.g., provisioning
a node with a disk image, assigning an IP address, etc.).
Whatever the mechanism, we end up with an executable
process that provisions an experimental container, consisting
of all required infrastructure and software, on a shared
platform.

Each interactive entity in the experimental container can
be given a name e.g., a bare metal node may be designated
as a server. An experimental environment can be thus



expressed as a set of named entities. Once an experimental
container is deployed, we can create a binding from the
named container entities (e.g., our server) to their concrete
representations (i.e., a deployed instance designated as the
server) such that a remote connection can be established.
Specifically, if a server in our container was provisioned as
a virtual machine with the IP address 10.100.0.2 and some
public key allowing access via SSH, the binding would
contain an entry for the server indicating its connectivity
via SSH using the provisioned address and key allowing
the system to transparently establish a connection to the
named entity.

Execution blocks contain the atomic steps of an experiment.
Steps in an experiment operate against named entities;
the user specifies which to which name a particular block
belongs. The binding then allows mapping execution
requests from the bloc to a corresponding remote entity.
A notebook’s separation of front-end presentation (the text
that is displayed/edited) and back-end execution (where
that text is executed as code) allows this to be transparent
from the user’s perspective and effectively re-purposes the
interactive notebook as a terminal multiplexer. Importantly,
the indirection of the binding makes it possible to change
the container’s representation (e.g., running on a different
platform, in a different topology, or simply a different
disk image) and then execute the exact same experimental
process as before within the new container, facilitating
introducing variation.

Presentation blocks are dedicated to translating any
raw output of the experiment to a reader-friendly form,
such as a table, graph, or interactive visualization.

This approach plays to the strengths of the notebook,
notably its expressivity. All aspects of experimentation hap-
pen in partnership with the system, not in accordance with
it. Perhaps most beneficially, this approach does not require
material changes to existing notebooks, platforms or, ar-
guably, workflows.

5. Implementation

We implemented this design pattern by extending vari-
ous parts of the Jupyter Notebook infrastructure, namely the
JupyterLab [47] front end application, the IPython [48] back
end kernel, and the JupyterHub [49] multi-user environment.
We deployed a JupyterHub installation that any Chameleon
user could access via their existing credentials; upon login, a
JupyterLab application exclusively for the user is automati-
cally provisioned within a Docker container and a special ac-
cess token that provides authentication to Chameleon’s API
on behalf of the user is implicitly bound to the application.
Crucially, any work that a user does within the application
is persisted in a home directory backed by a Docker volume
associated with the user: this allows the user to come back
weeks later and continue their work. Chameleon’s object
store is additionally integrated as an additional drive in the

JupyterLab application, allowing users to archive or access
notebooks and other artifacts within the same interface.

Jupyter Notebooks are by default constrained to sharing
one back end kernel; to allow us to express the different
categories of code blocks our approach requires, we
implemented a kernel that is capable of spawning and
proxying requests to various remote or local child kernels,
similar to prior work on polyglot [50] and reproducible
[51] notebooks.

Container blocks: Chameleon, like commercial clouds,
exposes several APIs that enable applications to perform
actions on behalf of users. For example, all of Chameleon’s
subsystems have command-line-interface clients that users
can invoke with their credentials to e.g., reserve or provision
a particular type of bare metal node as if the user interfaced
with the Chameleon GUI. To leverage this, container blocks
execute within a default kernel that has all relevant clients
already installed; these kernels support either scripting
either with Python or Bash. Within these blocks, users can
specify how their environment is created, e.g., by declaring
and uploading an orchestration template to Chameleon’s
orchestration service, or by specifying a series of imperative
steps that iteratively build up the environment. Additional
Chameleon-specific “building blocks” like Bash scripts and
Python libraries are available within the kernel’s execution
environment to make common tasks (such as provisioning
a bare metal node with a certain disk image, assigning a
public IP address and then waiting until the SSH service is
available) simpler to express.

Transparently storing and utilizing the user’s credentials
becomes particularly important here. It allows the blocks
defining the experimental container to be credential-less,
a property important both for security (credentials are not
explicitly handled within the notebook) and for shareability
(different users will use different credentials); the notebook
always provisions the experimental container on behalf
of the user. We accomplish this by storing the user’s
authenticating information in environment variables, a
commonly-supported affordance in API clients (Chameleon
being no exception.)

Execution blocks: the user can designate which named
entity in their environment should execute any particular
execution block. Code execution requests are then
marshalled to their corresponding remote entity and any
output is streamed back to the notebook. Traditionally,
Jupyter notebook kernels execute code within a local Python
REPL (Read-Eval-Print Loop), which interprets Python
scripts inputted by the user within a persistent session,
allowing e.g., variable assignments that can be referenced
in following scripts. To get around the limits of this local
execution model, which is bounded by the capabilities of
the host running the Jupyter interface, projects such as
Pangeo [18] and Jupyter Enterprise Gateway [52] instead
proxy code to dynamically-provisioned remote kernels.
Similarly, our kernel proxies code execution to a shell
session within the user’s experimental container, effectively
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Figure 2. The process of utilizing the approach for an existing complex
experiment. The diagram at the top-right represents the experimental con-
tainer.

giving users the same level of access they would enjoy by
logging in via a terminal. The kernel’s remote shell session
can be initialized transparently from the user’s point of
view: while a simple solution requires the user to input the
binding e.g., remote address and authentication information
for the named entities, a better solution automatically infers
this from the experimental container.

6. Use Case Scenario

To evaluate how well our approach works in practice we
applied it to an actual experiment enacted on the Chameleon
testbed [53]—a screencast of this exploration can be viewed
online [54]. This experiment seeks to answer the question
whether performance of adaptive bitrate streaming can ben-
efit from traffic engineering based on HTTP headers, where
retransmit requests are routed through a less-congested path.
After provisioning an experimental container consisting of a
client, server, and switches connected by two layer-2 links,
the experimenter must configure and reset the switches, then
start a script that generates congestion on one link, then start
the streaming server and instruct the client at the opposite
end to request a stream, measuring the total time and average

throughput rate. Given the interplay of multiple resources
and actions, the experiment is of non-trivial complexity and
makes it a good candidate to exercise the features of our
approach. We describe below first how the author of the
experiment can use our approach to develop the experiment
and produce shareable experimental artifacts, and then how
these artifacts can be used in repeating, replicating, or
producing variations on the original experiment.

6.1. Experiment Author Workflow

The objective of this workflow is to both support
the creative process, which is often meandering and
unpredictable, but at the same time produce digital artifacts
that will allow the experiment author to share the end result
of a finished experiment.

1. Foundation: All of the resources required for the
experiment, including bare metal nodes at two geographic
sites, isolated layer-2 networks between these sites, and
OpenFlow-enabled [55] routing across those links, can
be provisioned by Chameleon. The container creation is
expressed as a series of container blocks throughout the
notebook containing instructions that invoke Chameleon’s
APIs to reserve and provision resources on the testbed.
Importantly, the author knows that any future Chameleon
user will be able to execute these blocks without
modification, due to the commonality of the platform (i.e.,
testbed) and the transparent utilization of the future user’s
Chameleon authentication credentials.

2. Iteration: Every aspect of the experiment can be
built up iteratively. While the experimenter may start by
provisioning a simple environment, entities can be added
to or removed from the container declaration gradually
via container blocks. Steps in the experiment process
are similarly expressed as execution blocks, which can
be added, removed, or adjusted inline quickly as the
understanding of the experiment changes. The experimenter
assigns each execution block to a particular entity in the
experiment; for example, Figure 2 shows how the first step
of generating congestion is performed on a dedicated node.
Declaring this step in a block allows the experimenter
to quickly adjust the level of congestion and see its
relationship to the results. There is flexibility in what
constitutes an execution block: if the experimenter wishes
to directly install or configure software environments (e.g.,
the switches in this example) within their container outside
of the notebook, these changes can be persisted as a
snapshot; in this case the pre-configured snapshot can be
launched in an container block, allowing the experimenter
to return weeks later and be able to re-provision the exact
same experimental container.

3. Publication: Any artifacts intrinsic to the experiment
such as disk images can be published as public artifacts
to Chameleon’s image repository for other users to access.
Results can be plotted as graphs or represented as images



suitable for documents or slides. The notebook along with
any processed data or code referenced therein represents
a single reproducibility artifact that can accompany a
conference paper—and can also be shared via Chameleon’s
object store as described in the implementation section.

6.2. Repeating/Replicating Workflow

In this workflow we seek to demonstrate how the pro-
duced digital artifacts can be used to repeat or replicate the
experiment.

• Repeatability: The original author can run their entire
experiment multiple times using the experimental artifacts
to collect additional samples or data points; we were able
to repeat this experiment via the notebook at different
times establishing the experimental environment without
problems.

• Replicability: A paper reviewer can re-run the notebook
from the top down, provisioning the same experimental
container and repeating the same process against that
container, ultimately achieving the same or similar results;
we simulated this situation by asking colleagues, some
with little or no expertise in the subject matter to rerun
this experiment which they were able to accomplish easily.

• Environment variation: The experimental container can
be redefined to inject variation; we were able to provision
the container on a different set of bare metal nodes, as the
nodes used in the original experiment had been reserved
by another user.

• Process variation: The same environment can be used,
but the process can be altered; we could easily change
the level of congestion generated on the link to see how
it impacted the results.

• Analysis variation: The same environment and process
can be used, but the results can be processed in a different
manner, compared against a different baseline, or contain
more samples; we re-organized the analysis code to bet-
ter understand its mechanisms and formatted the graph
differently.

This design supports not only repeatability (from the
author’s perspective), replicability (from another’s perspec-
tive), but also provides a flexible model for variability, of-
fering a holistic solution to the challenges of reproducibility.

7. Conclusions

While there is general agreement on the importance of
repeating and replicating research, the cost of doing that
is often prohibitive, especially as it often comes at the
expense of doing more research. This is particularly dif-
ficult for computational experiments that are complex, and
where variation often depends on selecting and configuring
a complex environment.

We made the case for extending the concept of compu-
tational notebooks, as captured in the Jupyter notebook im-
plementation, with complex experimental containers, as im-
plemented in the Chameleon cloud, and introduced a design
pattern in which the experimenter uses notebooks to develop
the experimental environment as well as the process. We
demonstrate by means of a complex experimental scenario
how this process works in practice both from the perspective
of facilitating the original experiment development and of
repeating it and introducing variations, greatly simplifying
both. Our demonstration shows that using the techniques
introduced here even complex experiments can be developed
from the ground up to be replicable, facilitating both the
work of the experiment author and their sharing with wider
community.
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O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec,
“Adding virtualization capabilities to the Grid’5000 testbed,” in
Cloud Computing and Services Science, ser. Communications in
Computer and Information Science, I. I. Ivanov, M. van Sinderen,
F. Leymann, and T. Shan, Eds. Springer International Publishing,
2013, vol. 367, pp. 3–20.

[41] R. Ricci, E. Eide, and C. Team, “Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp.
36–38, 2014.

[42] Introducing five new Amazon EC2 bare metal instances. [Online].
Available: https://aws.amazon.com/about-aws/whats-
new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/

[43] AWS DirectConnect. [Online]. Available:
https://aws.amazon.com/directconnect/

[44] ExpressConnect. [Online]. Available:
https://www.alibabacloud.com/products/express-connect

[45] Y.-T. Chang, R. T. Hood, H. Jin, S. W. Heistand, S. H. Cheung,
M. J. Djomehri, G. Jost, and D. S. Kokron, “Evaluating the
suitability of commercial clouds for NASA’s high performance
computing applications: A trade study,” 2018.

[46] CloudFormation. [Online]. Available:
https://aws.amazon.com/cloudformation/

[47] JupyterLab. [Online]. Available:
https://jupyterlab.readthedocs.io/en/stable/

[48] IPython. [Online]. Available: https://ipython.org/

[49] JupyterHub. [Online]. Available:
https://jupyterhub.readthedocs.io/en/stable/

[50] G. Wang, M. C. Leong, and B. Peng, “Script of scripts,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC18 Poster). IEEE
Press, 2018.

[51] E. Bavier, L. Courtès, P. Garlick, P. Prins, and R. Wurmus,
“Guix-hpc activity report 2017–2018,” 2019.

[52] Jupyter Enterprise Gateway. [Online]. Available:
https://jupyter-enterprise-gateway.readthedocs.io/en/latest/

[53] D. Bhat, J. Anderson, P. Ruth, M. Zink, and K. Keahey,
“Application-based QoE Support with P4 and OpenFlow,” in
Proceedings of the IEEE Conference on Computer and Networking
Experimental Research using Testbeds (CNERT 2019). IEEE
Press, 2019.

[54] J. Anderson, “Reproducibility by Default: Jupyter on Chameleon
(screencast),” Oct. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3489724

[55] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.


