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Abstract—Recent advancements have expanded Chameleon’s
support for networking experiments by enabling deeply pro-
grammable networks spanning wide-areas and controlled by
the user. New capabilities include: 1) bring-your-own-controller
(BYOC) software defined networking (SDN) and 2) Layer 2
stitching to external testbeds and facilities including stitching
between the two Chameleon sites.

This paper presents the new networking capabilities of
Chameleon along with corresponding experiments that evaluate
limitations and features of using SDN in a wide-area environment.
The experiments serve both as an evaluation of SDN in a
wide-area environment and as a guide for designing advanced
networking experiments on Chameleon.

I. INTRODUCTION

The Chameleon testbed represents an experimental instru-
ment for Computer Science operating on the principles that
users are allowed deeply reconfigurable access to environ-
ments that are isolated in ways relevant to the experiments
each platform supports. Chameleon allows users to scale
Big Compute and Big Data experiments to large amounts
of compute and storage in different configurations using
heterogeneous hardware. Recent advancements have expanded
Chameleon’s support for networking experiments by enabling
deeply programmable networks spanning wide-areas and con-
trolled by the user.

The two main networking capabilities that have been added
to Chameleon are: 1) bring-your-own-controller (BYOC) soft-
ware defined networking (SDN) and 2) Layer 2 stitching to
external testbeds and facilities including stitching between the
two Chameleon sites. BYOC networking allows users to allo-
cate isolated hardware OpenFlow network switches controlled
by custom or off-the-shelf controllers deployed and managed
by the user. The use of OpenFlow allows users to have
deep access to the network and deploy complex experiments
beyond what is possible with traditional switched networks.
In addition, these switches can be stitched using isolated
layer 2 circuits (up to 100 Gbps) transiting wide-area circuit
providers, such as Internet2 AL2S [1] and ESnet OSCARS [2].
Stitched networks allow users to connect programmable switch
hardware between Chameleon sites (University of Chicago
and Texas Advanced Computing Center (TACC)), as well as
connect Chameleon switch hardware to other testbeds (e.g.
GENI [3]), facilities, or even a user’s home institution.

Although these new capabilities provide deeply pro-
grammable networking, users must carefully implement their

experiments to achieve their desired results. Specifically, users
should be aware of host tuning options for high-latency
connections, as well as the effect of OpenFlow controller
placement with respect to switch location.

In a typical OpenFlow deployment the switch has a subset
of the controller’s flow rules in its tables at any given time.
When a packet arrives that does not match any flows known
to the switch, the packet is forwarded to the controller which
processes the packet and pushes a new flow rule back to the
switch. The switch installs the flow in one of its tables and
uses that flow to process future matching packets.

As the latency between the controller and the switch
increases, the time necessary to configure the switch also
increases. Even relatively small latency in switch configuration
can result in dropped or delayed packets, which will negatively
affect the performance of the network. Ideally, BYOC exper-
iments should be designed to have the OpenFlow controller
co-located with the switch and deployed within a Chameleon
host at the same site as the network. However, co-location
is not possible for many experiments (e.g. a single controller
used for multiple distributed switches). In these cases, it is
important to understand the effect of controller latency on an
experiment.

This paper presents new networking capabilities of
Chameleon along with corresponding experiments that eval-
uate limitations and features of using SDN in a wide-area
environment. The experiments serve both as an evaluation of
SDN in a wide-area environment and as a guide for designing
advanced networking experiments on Chameleon. Specifically,
we evaluate the effect placement of controllers with respect
to SDN switches has on OpenFlow flow insertion times,
TCP bandwidth, and the performance of wide-area multi-path
routing.

II. BACKGROUND

Chameleon is largely built using OpenStack [4], a widely
supported, open source, cloud computing software. This sec-
tion presents the building blocks used to enable the BYOC
and stitching experiments: OpenStack, Corsa DP2000 series
switches, and dynamic wide-area Layer 2 circuits.

A. OpenStack

OpenStack is composed of several services which manage
compute, storage, and networking resources, as well as provide
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Figure 1. Each Chameleon site has been extended to include Corsa DP2000 series switches that are used to create mutually isolated line-rate OpenFlow
forwarding contexts controlled by the user. The forwarding contexts can be stitched via Internet2 and ESnet to each other, ExoGENI, campus research
laboratories, and other facilities.

identity management, monitoring, orchestration, etc.
Neutron is the Networking service within OpenStack. It

implements APIs allowing users and administrators to de-
fine networking within an OpenStack cloud deployment [5].
It manages virtual networking infrastructures composed of
networks, subnets, switches, and routers. It is also capable
of configuring physical network devices, such as network
switches. Neutron provides DHCP and NAT forwarding ser-
vices for bare-metal nodes and virtual machines, and can
provide advanced services such as firewalls and VPNs.

Neutron is composed of a main API server, plugins imple-
menting specific networking configurations (such as VLAN or
VXLAN), and agents providing various networking services
that can be leveraged by compute instances in an OpenStack
cloud (DHCP, L3 routing, access to metadata servers, etc.).

Users can define tenant networks, i.e. networks which are
under their control and dedicated to their own use. Users
configure these networks with a chosen IP subnet and connect
them to external networks such as the Internet via virtual
routers. These networks are isolated from the physical infras-
tructure and from other tenant networks. Giving full control
of the network configuration to users allows them to define
networks as required by their applications.

Ironic [6] is the Bare Metal service within OpenStack. It
manages the configuration of bare metal nodes, deployment of
disk images onto them, serial console access, etc. Originally,
Ironic only supported placing all provisioned nodes and nodes
under deployment into a single Layer 2 network shared by
all tenants. This meant user-defined tenant networks could
not be used for bare-metal, resulting in a lack of isolation
between tenants and limited configuration capabilities for
users. In the OpenStack Newton release, Ironic added support
for networking multi-tenancy [7], allowing each tenant to
define and use tenant networks isolated using VLAN tagging,

with all the flexibility advantages described above.
Ironic interacts with Neutron to perform network config-

uration necessary to ensure nodes are on the right Layer 2
network. This can be done via Modular Layer 2 (ML2) drivers
specialized for particular network devices or using networking-
generic-switch (NGS), an extendable framework responsible
for applying configuration information to networking hardware
equipment [8]. NGS supports various families of switches
from vendors such as Cisco, Huawei, Arista, and Dell Force10.
The way NGS works is described as follows:

• When a new network is created (respectively deleted),
Neutron allocates a VLAN ID to use as a segmentation ID
for the network and invokes NGS to define (respectively
undefine) the corresponding VLAN on each switch in the
cloud infrastructure.

• When a bare metal instance is launched with a chosen
network, Neutron invokes NGS to configure the port of
the bare metal node hosting the instance as access port
for the corresponding VLAN on the ToR switch.

• When a bare metal instance is terminated, Neutron in-
vokes NGS to remove the port of the bare metal node
from the corresponding VLAN on the ToR switch.

• NGS also supports configuring trunk ports for specific
interfaces, such as uplinks or OpenStack controller nodes,
which need to access a wide range of VLANs.

This paper presents an extension of the NGS plugin that
enables provisioning of tenant controlled isolated OpenFlow
switches using Corsa DP2000 series switches discussed in
Section II-B.

B. Corsa DP2000 Series Switches

Corsa DP2000 series switches [9] are ideally suited for
multi-tenant networking infrastructure. These switches are a



deeply programmable switching platform that expose indepen-
dent virtualized forwarding contexts (VFCs), seen in Figure 1,
that operate at line-rate (up to 100 Gbps). Each VFC acts as
an independent OpenFlow switch with its own controller and
can forward traffic between a subset of the physical ports (or
logical ports defined by a VLAN tag).

Multiple isolated tenants can be supported on the switch
by creating independent VFCs for each tenant and attaching
each tenant’s nodes and VLANs only to their VFC. Deep pro-
grammability by the tenant can be achieved by attaching each
VFC to a tenant-managed OpenFlow controller. Chameleon
uses the Corsa’s VFC abstraction to isolate tenant networks
while providing tenant-controlled OpenFlow programmability.

C. Dynamic Wide-area Layer 2 Circuits

Recent advances made by wide-area network transit
providers have enabled IT staff to connect campuses and
other facilities using on-demand wide-area Layer 2 circuits.
These next generation wide-area networking capabilities are
increasingly necessary as we see more large-scale big data
science collaborations. Example systems include Internet2’s
Advanced Layer 2 Services (AL2S) and DOE’s ESnet.

Each of these providers capabilities can be accessed inter-
actively or programmatically using well defined interfaces.
ESnet uses the On-demand Secure Circuits and Advance
Reservation System (OSCARS) while Internet2 AL2S uses
the Open Exchange Software Suite (OESS). Before using such
services, a campus or facility must be connected appropriately
and a dynamic connection point must be named with a URN.
After this initial configuration, campus or facility staff can
create VLANs between their URN and the URN of any other
authorized campus with a similar connection.

These dynamic Layer 2 circuits are commonly used to cre-
ate temporary, high-bandwidth, dedicated, wide-area VLANs
between facilities in order to transfer large amounts of data or
to create complex wide-area network topologies for computer
networking experiments (e.g. using GENI). Work presented in
this paper describes how IT staff can connect tenant resources
on Chameleon to their campuses and facilities using the
dynamic advanced Layer 2 circuits.

III. IMPLEMENTATION

This section describes the general configuration and infras-
tructure required to enable BYOC and stitching to OpenStack
clusters.

A. OpenStack Configuration: Layer2 Network Stitching

Previous sections discussed how dynamic Layer 2 circuit
providers are used by GENI to stitch between cloud resources
and to external campuses and facilities. Stitching Layer 2
circuits between OpenStack and external resources requires
extending OpenStack Neutron networks outside the cluster
to dynamic meeting points accessible by external domains.
Figure 1 show how Chameleon follows ExoGENI [10] by
referring to these meeting points as stitchports or sometimes
stitchable VLANs.

OpenStack bare metal clusters use either a flat network
shared by all tenants or VLANs to create isolated Layer 2
networks for each tenant. Each isolated network is configured
with its own subnet and router providing layer 3 service
for nodes connected to the network. Typically, an OpenStack
cluster has a single pool of VLANs from which tenants request
VLAN isolated networks.

Enabling external stitching in OpenStack relies on the same
network isolation abstraction but extends a subset of the
available VLANs to specific meeting points outside of the
OpenStack cluster. If these VLANs extend to dynamic meeting
points (e.g. Internet2 AL2S URNs), external facilities can be
stitched to the OpenStack networks.

Each OpenStack cloud can access several stitchable meeting
points, as well as have VLANs limited to the local site.
The provider network abstraction is used to allow tenants
to choose between VLANs and specific stitchable VLANs.
Separate pools of VLANs are plumbed to each external
stitching point. A separate provider network is created to
manage each pool of VLANs. Each provider is assigned a
separate virtual interface and VLAN range. Tenants can create
isolated Neutron networks using standard OpenStack tools and
specify the provider network to provision a VLAN that extends
to a specific destination (e.g. ExoGENI).

There can be multiple stitching VLAN providers if there
are multiple stitching paths (e.g. one for stitching to each
testbed). As long as each of these virtual providers are assigned
a disjoint set of VLANs, tenants that require stitchable VLANs
will only need to request a VLAN from the provider network
that manages access to the desired external stitchport.

Creating an OpenStack network mapped to a specific
provider is normally reserved to administrators (as described in
Section II-A). Using provider networks for stitching requires
reconfiguring the policy to allow regular users to do so as well.

User Interface: In order to use Chameleon stitchable
VLANs, a tenant must follow the existing CLI workflow (with
slight modifications) for creating isolated tenant networks. The
only change is that the provider network must be specified
to be from the desired pool (e.g. exogeni). Upon creation
of the network the CLI reports the provider:segmentation_id
which is the VLAN that was assigned. Currently, there are
10 stitchable VLANs from each Chameleon site connecting
to ExoGENI. Users must use the segmentation_id allocated
by Chameleon to create an ExoGENI slice to complete the
stitch. The remainder of the Chameleon workflow remains
unchanged. An example CLI command is:

openstack network create \
--provider-network-type exogeni \
--provider-physical-network vlan \
myTenantNetwork

provider:segmentation_id | 3290

B. OpenStack Configuration: Corsa and BYOC
In a previous section we discussed OpenStack Neutron

and the NGS plugin used by Chameleon to configure the



network switches, including the Dell switches that are part of
Chameleon’s first-phase hardware. This work extends the stan-
dard NGS plugin to: 1) support Corsa DP2000 series switches,
2) support users to use their own OpenFlow controllers to
control their networks, and 3) stitch networks to one or more
external layer 2 circuits.

Recall that OpenFlow and NGS allow tenants to create iso-
lated VLAN networks on many common types of networking
hardware. This work extended the NGS plugin to support
traditional OpenStack VLAN networking on Corsa switches.
VLANs are implemented on the Corsas as a VFC that forwards
traffic between a set of user nodes and a specified uplink
VLAN. In this basic configuration, the VFC is configured
as a learning switch by connecting to a Chameleon-managed
OpenFlow controller. This functionality mimics that available
through the NGS plugin on standard switches and allows Corsa
switches to be used with a standard OpenStack VLAN network
using the standard OpenStack API.

The addition of support for BYOC is similar to that of
a standard isolated VLAN network except that the VFC is
connected to a user-specified OpenFlow controller instead
of the learning switch controller managed by Chameleon.
BYOC uses the standard OpenStack networking API with the
addition of an OpenFlow controller IP and port passed in the
description field when creating the network. When the NGS
plugin creates the isolated VFC it sets the OpenFlow controller
to the IP and port in the description. Any controller IP and
port can be used as long as the server is reachable using the
Internet.

By default, every Chameleon network is assigned a VLAN
that isolates traffic across the local Chameleon infrastructure.
Recall that externally stitched networks use a VLAN from
a pool that is pre-plumbed to externally facing stitchports.
BYOC networks implement this by attaching a VLAN tagged
logical port between the VFC and the physical uplink port on
the switch. This results in a VFC that has one uplink port
(possibly externally stitched) and one local port for each node
connected to the network. Arbitrary OpenFlow rules can be
applied to traffic in the VFC.

Users can add additional externally stitched circuits to any
BYOC network. This is accomplished by assigning multiple
OpenStack networks (and their associated VLANs) to a single
VFC. When a network in created, the user can optionally name
the network by adding another argument to the description
field. The NGS plugin will associate all networks that specify
the same name to a single VFC. Each Chameleon project
has its own name space for network names so only VLANs
within a project can be associated with the same VFC. When
a VLAN is added to an existing VFC, a new logical uplink
port associated with the new network’s VLAN is added to the
VFC, enabling the VFC to send traffic to the newly stitched
circuit.

User Interface: In order to use Chameleon BYOC net-
works, a tenant must follow the existing CLI workflow (with
slight modifications) for creating isolated tenant networks. The
only change is that the controller must be added to the descrip-
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Figure 2. Experiments restricted to a single site contain a VFC connecting
multiple nodes and controlled by either a local controller simulating latency
with tc or a remote controller on ExoGENI.

tion field. The remainder of the Chameleon workflow remains
unchanged. To specify a name for the VFC, VSwitchName
should be appended to the description field. An example CLI
command is:

openstack network create \
--provider-network-type exogeni \
--provider-physical-network vlan \
--description \
OFController=<OF_IP>:<OF_Port>,\
VSwitchName=<name> \
myTenantNetwork

IV. EVALUATION

As discussed in previous sections, placement of an Open-
Flow controller relative to the OpenFlow switch is important.
Chameleon allows users to place their controllers at any
IP accessible through the Internet. The rest of this section
discusses a series of experiments evaluating the effect of
controller placement.

Each experiment tests a different aspect of controller place-
ment on BYOC performance. Several controller placements
were used. The basic placement (Figure 2) deploys the con-
troller in the same Chameleon rack as the switch and simulated
increased latency using the tc tool. In cases where both
Chameleon sites were used (Figure 3), a separate controller
was placed in each site and latency was controlled with tc.
We also experimented with naturally occurring latency by
deploying the same Ryu controller on virtual machines at sev-
eral sites across ExoGENI. Locations tested include: RENCI
(Chapel Hill, NC), UH (Houston, TX), Starlight (Chicago,
IL), Wayne State (Detroit, MI), UFL (Gainesville, FL), UVA
(Amsterdam), UAF (Fairbanks, AK).

A. Experiment 1: Flow Table Miss Reaction Time

Recall that when a packet arrives at an OpenFlow switch,
it is tested against all known flow rules. If it does not match
any flows known to the switch, the packet is forwarded to
the controller which processes the packet and pushes a new
flow rule back to the switch. The time necessary to complete
this process depends on the speed and complexity of the
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controller hardware and software, as well as the network
latency between the switch and the controller. This experiment
measures the time required to install a flow caused by a table-
miss with varying amounts of latency between the switch and
the controller.

In the experiment, a BYOC network is deployed on the
TACC Chameleon site. Two nodes are connected to the net-
work with one node sending a ping (ICMP) packet to the other
every 10ms. The OpenFlow controller programs the switch
with permanent flows for all traffic, except for the flow rule
forwarding traffic from the source of the ping to its destination.
This flow has a hard timeout, which forces the switch to expire
the rule periodically. The result is that when the flow expires,
the next ICMP packet is sent to the controller, which responds

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600

T
im

e
 [

m
s
]

Latency [ms]

Time Required to Reinstall Flows

Simulated Latency
RCI (Chapel Hill, NC)

SL (Chicago, IL)
UFL (Gainsville, FL)

UH (Houston, TX)
WSU (Detroit, MI)

UAF (Fairbanks, AK)
UVA (Amsterdam, Holland)

Figure 4. Time necessary to reinstall a flow that has timed out for various
latencies between the switch and its controller. The line represents a co-located
controller with simulated latency between the minimum possible (<1ms) and
512 ms. Individual dots show naturally occurring latency between the switch
and controllers running on various ExoGENI nodes.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  20  40  60  80  100  120  140

B
a
n

d
w

id
th

 [
G

b
p

s
]

Timeout [s]

TCP Bandwidth of Varying Flow Timeouts

Simiulated Latency minimum
Simiulated Latency 10 ms
Simiulated Latency 20 ms
Simiulated Latency 50 ms

Simiulated Latency 100 ms
Simiulated Latency 200 ms
Simiulated Latency 400 ms

SL (Chicago, IL)
UFL (Gainsville, FL)

WSU (Detroit, MI)
UH (Houston, TX)

UAF (Fairbanks, AK)
UVA (Amsterdam, Holland)

Figure 5. Single stream TCP bandwidth achieved by iperf3, across various
hard timeouts, imposed on flows, with various simulated and natural latency
between the switch and the controller.

with the same rule to be installed. While the new flow is being
fetched, subsequent ICMP packets are dropped and never reach
their destination. Once the flow is re-installed, ICMP traffic
is successfully forwarded again. The experiment counts the
number of ICMP packets that are dropped and calculates the
time required to reinstall the flow based on the 10ms interval
between packets.

The experiment is run using the Ryu controller configuration
described above, with both simulated and natural latency.
For each configuration latency, we recorded the time for 20
reinstalls. The resulting average flow reinstall times can be
seen in Figure 4. The lowest achievable reinstall times were
approximately 100ms with the highest naturally occurring
reinstall time being from Amsterdam 157ms.



B. Experiment 2: Effect of Flow Timeout on TCP Bandwidth

Many OpenFlow configurations periodically induce dropped
flows and subsequent flow re-installation. There are situations
that require flows to be dropped and re-installed. Often this is
a result of timeouts required for each rule that indicate when
the switch should automatically remove the rule. After a rule
times out, the next packet that would have matched that rule
will instead be forwarded to the controller, which will re-install
a new rule (possibly the same rule). The switch installs the
flow in one of its tables and uses that flow to process future
matching packets. As the latency between the controller and
the switch increases so does the time necessary to configure the
switch, negatively affecting the performance of the network.
Increased reinstall time generally results in increased numbers
of dropped packets.

TCP is particularly affected by dropped packets. In this
experiment we use iperf3 to send a 180-second single
TCP stream bandwidth test between two nodes in the same
Chameleon rack. The controller is configured with a hard
timeout that triggers a flow rule re-install periodically. For
each artificial and natural latency we vary the hard timeout
and record the bandwidth using iperf3. For each case, hosts
were tuned using the ESnet’s suggested tuning [11]. Tests
with high latency and/or low timeout achieve much lower
bandwidth. Figure 5 can be used to design experiments that
require bandwidth.

C. Experiment 3: Wide-area Path Change

The final experiment involves two BYOC switches, one
on each Chameleon site, that are stitched together with two
separate Internet2 AL2S circuits (i.e. two paths). Nodes at
each sites are connected to the switches and can send traffic to
each other. The controller is configured to send traffic between
each site along one path at a time. When the controller sees
specific traffic characteristics, it will switch the path used by all
traffic. In the experiment we use ARP packets for specific IPs
to trigger a path change. Other multi-path experiments might
use congestion or traffic type to modify the path choice.

The experiment measures the time required to switch be-
tween two paths in reaction to an observed traffic characteris-
tic. We vary the latency as in the other experiments and present
the time required between when the characteristic traffic (ARP
packets for a specific IP) is introduced and when traffic starts
to use the other path.

Figure 6 shows the results. The minimum amount of time
is seen with low latency configurations and requires 275 ms,
while the longest amount of time required for a natural latency
is the ExoGENI VM in Amsterdam, which requires 564 ms
to switch the path.

V. CONCLUSIONS

This paper has presented work enabling BYOC and stitching
of experiments across Chameleon, ExoGENI, and campus
facilities. Further it evaluated controller placement with respect
to switch location and provided useful information for users
to design successful networking experiments on Chameleon.
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