
Teaching and Learning
ML Ops/Systems on Chameleon
Chameleon Webinar - November 24, 2025
Fraida Fund

ML in isolation:

Image source: "Hidden technical debt in machine learning
systems." NeurIPS 2015.

Operational ML systems:

How it started: Intro ML

Training
cost + velocity

Training-
serving skew

Inference
time +
K8S deployment

Planning an ML Systems/Ops course

Student survey

→ 191 enrolled
 Spring 2025

Other courses in our curriculum
Machine learning-centric
Intro ML, Deep Learning, Computer Vision, AI for X

Infrastructure-centric
Cloud Computing, Internet Architecture and Protocols

Some ML Systems/MLOps
High Performance ML, Efficient AI + Hardware Accelerators, Big Data & ML Systems

Examples
Machine Learning Systems Design @ Stanford

Systems for Machine Learning @ UT Austin

Machine Learning Systems @ U of SC

Operationalizing Machine Learning at Chicago

Machine Learning in Production at CMU

Full Stack Deep Learning at UC Berkeley

Research-seminar type
Small scale, discussion, academic paper
readings + guest lectures

"Notebook-style" hands-on work
Lab assignments and HW on e.g. Colab
or managed services on commercial clouds

Much less on infra + systems

https://stanford-cs329s.github.io/
https://www.cs.utexas.edu/~akella/CS378/F24/index.html
https://pooyanjamshidi.github.io/mls/
https://chicagodatascience.github.io/MLOps/
https://ckaestne.github.io/seai/S2022/
https://fullstackdeeplearning.com/course/2022/

Teaching
ML in isolation:

Teaching
Operational ML systems:

Infrastructure requirements:

Run Python code/notebooks
(maybe + GPU)

Works on: Jupyter, Google
Colab, traditional HPC

Infrastructure requirements: ???

Notebook/batch not a natural interface for
learning ML Systems + Operational ML!

"Cloud" is the natural interface - full control over:
Compute + storage + network + software systems layers

What we did

By the end of the course, students should understand the full lifecycle of
machine learning systems and have experience designing, building, and
maintaining them. Specifically, students should be able to:

● implement scalable training workflows, including training very large models,
multi-GPU training, and cluster management,

● manage experiment tracking and versioning,
● deploy performant inference systems, accounting for compute requirements

and latency alongside ML metrics such as accuracy,
● evaluate and monitor deployed systems, including both prediction quality

and compute resource usage,
● apply DevOps principles such as CI/CD, infrastructure as code, and

cloud-native computing, to ML systems, and
● reason about system reliability, maintainability, and risk.

1. Introduction to ML systems
(prototype vs production; ML pipeline as central
object vs ML model; business alignment)

2. Cloud Computing
(Building blocks of cloud; IaaS, PaaS, SaaS service
models; containers; container orchestration)

3. DevOps for ML systems
(IaC; CI/CD, version control, as applied to ML
systems; cloud native computing)

4. Model training at scale
(gradient accumulation; reduced/mixed-precision;
PEFT; distributed training with DDP/FSDP)

5. Model training infrastructure, platforms
(experiment tracking, training on a cluster)

6. Model serving
(graph compilation; operator fusion; quantization;
concurrent execution; dynamic batching)

7. Monitoring and evaluation
(ML, domain-specific, and operational metrics;
evaluating fairness/bias; canary deployments; A/B
testing; getting ground truth for production data.)

8. Data systems
(storage in the cloud; ETL pipelines; feature stores)

9. Safeguarding ML systems
(types of harm; mitigation strategies)

10. Commercial clouds

Enrollment: 191 students in first offering.

Audience: Mostly MS Computer Engineering
students + some MS Electrical Engineering,
Data Science, Computer Science, etc.

Prerequisites: Only Intro ML
(broad survey of machine learning, ends at
"transfer learning with ConvNets")

Structure: Weekly in-person lecture
(+ readings, videos, case studies) followed
by hands-on lab completed at home (4-5
hours).

Grading: 60% weekly labs, 40% group
project

Project: Students worked in groups of 3-4
to design and implement a large-scale ML
system.

Human support infrastructure:

● Weekly office hour with the
instructor and separate office hours
with two TAs.

● Online Q&A forum (by the end of
semester, over 700 discussion
threads, more than 3,000 unique
posts)

The long-running example: GourmetGram
Imagine you have just joined a small startup called
GourmetGram, whose entire business is built around sharing
photos of food. Your first task is to develop a machine
learning model that can look at a picture and automatically
classify the food it contains—bread, soup, meat, dessert,
vegetables, and so on—so the website can automatically tag
each image with the correct category and use those tags to
organize, search, and filter photos for users.

Project requirements
Students had to describe a hypothetical business they were designing for, and
align their system (data, model, infrastructure) with the needs of that business.

Group structure in each 3-4 person group:

● Problem formulation, value proposition, data selection, and system
integration were shared responsibilities among all group members.

● Each student was expected to take ownership of a specific subsystem:
training, serving, monitoring, data pipeline development, or continuous
integration and deployment.

● There were specific expectations for each role.

Opinionated choices
Doing it the "hard way" (minimal managed services)
Transition from self-managed to provider-managed services is easier

Step-by-step instructions for lab assignments
Students focus on doing + observing the system behavior

Intensive hands-on workload
Learn by doing

Project structure and requirements

Infrastructure

Platform tradeoffs
User has control over
compute + storage +
network + systems? Limits $ risk?

Like a "standard"
cloud?

Conventional HPC ❌ ✅ ❌
Commercial clouds ✅ ❌ ✅

Other research testbeds ✅ ✅ ❌
Chameleon Cloud ✅ ✅ ✅��

Chameleon resources used for lab assignments

Compute

Basic VM compute instances (m1.small, m1.medium, m1.large)
Single-GPU instances (compute_liqid, compute_gigaio, gpu_rtx6000)
Multi-GPU instances (gpu_a100, gpu_v100, gpu_p100, gpu_mi100)
Edge devices (raspberrypi5) (BYOD)

Network
Floating IP addresses
Virtual private networks + routers
Security groups to permit ports on which services are running

Storage Block storage volumes
Object storage

Interface

Browser-based GUI (OpenStack Horizon GUI)
CLI (openstack CLI) via Chameleon-hosted Jupyter environment
Python API (python-chi, OpenStack Python API) via hosted Jupyter
Terraform via OpenStack provider

Systems and frameworks used for lab assignments

Cloud

DevOps

Model training

Model serving

Evaluation and
monitoring

A substantial minority of students used more

$150

"Most expensive"
student's cost 😮:
$665 on AWS,
$590 on GCP

Chameleon resources used for projects

Compute

70,259 hours general compute
 5,446 GPU instance
 975 hours other bare metal
 175 hours edge
76,855 hours total

Storage 9 TB block storage volumes
1.5 TB object storage

Estimated cost
on commercial cloud

$25,889 ($136/student) on AWS
$26,218 ($137/student) on GCP

Note: cost estimates are not as precise for projects as for lab assignments, because we do
not know what "lowest equivalent-cost commercial cloud instance" is in each case.

How it went: Spring 2025 +

What went well
Students were able to complete labs
Some on-the-fly fixes due to scale, changes in underlying systems

Students had access to resources with zero $ risk
Obviously, the last days before the deadline were wild…

Students got a nice "portfolio" project out of the deal

Many students went on to engage in research + projects on the topic
Students feel more comfortable/confident and aware of research in this area

What could have gone better
Timelines were difficult to get right
First time offering + moving target = things break at the last minute

Some students did not engage meaningfully with labs
Focus on "doing the steps to get the grade" and not what it does/how it works

Some students did not engage meaningfully with project
Group problems, deadline problems

What we'll do differently
Labs - more scaffolding
Clean up some confusing points, add video, more supporting material

Labs - more on data systems
This was minimal the first time around, but would have made projects better

Project - more structure and intermediate deadlines
Add deadlines + demos for: individual contribution, integration, operation

More on commercial clouds

Extra topics: LLMOps, RAG, Agents

How you can use it

Instructor checklist

❏ Plan your sequence

❏ Trial your sequence

❏ Reserve resources in advance

❏ Talk to me (optional but recommended!)

Open educational resources
Course website has all materials**! You can use them!

(Check out the "Instructor Guide" in the menu on left)

Contact: ffund@nyu.edu

** Currently being updated in preparation for the next
course offering this Spring.

https://ffund.github.io/ml-sys-ops/

Other education efforts @ Chameleon

https://www.chameleoncloud.org/blog/2025/05/27/teaching-cloud-computing-with-chameleon-making-complex-concepts-accessible/
https://www.chameleoncloud.org/blog/2023/08/21/from-edge-to-cloud-at-the-university-of-missouri/
https://www.chameleoncloud.org/blog/2023/07/17/educating-with-chameleon-at-vanderbilt/
https://www.chameleoncloud.org/blog/2021/08/23/chameleon-education-iits-intro-parallel-programming/
https://trovi.chameleoncloud.org/dashboard/artifacts/4a2e9309-0ac4-4708-a97f-bf20ccc5bb1f
https://trovi.chameleoncloud.org/dashboard/artifacts/4a2e9309-0ac4-4708-a97f-bf20ccc5bb1f
https://www.chameleoncloud.org/chameleon-cloud-users-meeting/user-meeting-2023/
https://fount.cs.uchicago.edu/

I would love to hear from you!
Contact: ffund@nyu.edu

mailto:ffund@nyu.edu

