CHAMELEON: HOW TO BUILD A CLOUD++

Kate Keahey
Mathematics and CS Division, Argonne National Laboratory
CASE, University of Chicago
keahey@anl.gov

September 16, 2019
2019 NSF Workshop on Connecting Large Facilities and Cyberinfrastructure
CHAMELEON IN A NUTSHELL

- We like to change: testbed that adapts itself to your experimental needs
 - Deep reconfigurability (bare metal) and isolation (CHI) – but also ease of use (KVM)
 - CHI: power on/off, reboot, custom kernel, serial console access, etc.

- We want to be all things to all people: balancing large-scale and diverse
 - Large-scale: ~large homogenous partition (~15,000 cores), 5 PB of storage distributed over 2 sites (now +1!) connected with 100G network...

- ...and diverse: ARMs, Atoms, FPGAs, GPUs, Corsa switches, etc.

- Cloud++: leveraging mainstream cloud technologies
 - Powered by OpenStack with bare metal reconfiguration (Ironic) + “special sauce”
 - Chameleon team contribution recognized as official OpenStack component

- We live to serve: open, production testbed for Computer Science Research
 - Started in 10/2014, testbed available since 07/2015, renewed in 10/2017
 - Currently 3,500+ users, 500+ projects, 100+ institutions
LEAVING NO EXPERIMENT BEHIND...

Supporting research projects in architecture, operating systems design, virtualization, power management, real-time analysis, security, storage systems, databases, networking, machine learning, neural networks, data science, and many others.
TOWARDS A REPRODUCIBILITY ECOSYSTEM

Should I invest in making my experiments repeatable? Should I invest in more new research instead?

- Combining the ease of notebooks and the power of a shared platform
 - Storytelling with Jupyter: ideas/text, process/code, results – but limited containers
 - Chameleon: sophisticated experimental containers in need of “storytelling”

- Reproducibility by default: Chameleon + JupyterHub
 - Integrated Jupyter server
 - Python and bash interfaces for all the main testbed functions
 - Working with named containers

- Integration with Zenodo
 - Import/export of code/notebooks
 - Publishing via Zenodo: store your experiments and make them citable!
PARTING THOUGHTS

- Physical environment: a rapidly evolving platform implemented as cloud++
 - Specially adapted cloud with support for advanced cloud computing research
 - Originally: “Adapts to the needs of your experiment”
 - Now also: “Adapts to the needs of its community and the changing research frontier”

- Towards an Ecosystem: a meeting place of users and providers sharing resources and research
 - Testbeds are more than just experimental platforms
 - Common/shared platform is a “common denominator” that can eliminate much complexity that goes into systematic experimentation, sharing, and reproducibility...
 - … as well as education!

- Be part of the change: tell us what capabilities we should provide to help you share and leverage the contributions of others!