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Abstract
The Chameleon testbed is a case study in adapting the cloud
paradigm for computer science research. In this paper, we
explain how this adaptation was achieved, evaluate it from the
perspective of supporting the most experiments for the most
users, and make a case that utilizing mainstream technology
in research testbeds can increase efficiency without compro-
mising on functionality. We also highlight the opportunity
inherent in the shared digital artifacts generated by testbeds
and give an overview of the efforts we’ve made to develop it
to foster reproducibility.

1 Introduction

The primary goal of computer science (CS) experimental
testbeds is to support CS systems research by inventing and
operating a scientific instrument on which such research can
be conducted. Like in any other experimental science, such
instrument is a critical tool: while we can conceive of all
sorts of experiments, in practice we can carry out only those
that are supported by an instrument that allows us to deploy,
capture, and record relevant phenomena. The objective of ex-
periment support can be considered along two dimensions:
supporting the broadest possible set of experiments for the
largest possible set of experimenters. The factors that influ-
ence the former include providing state-of-the-art hardware
at appropriate scales and sufficiently expressive interfaces for
allocating and configuring that hardware (i.e., deploying ex-
periments). The latter is influenced by the cost of per user and
per experiment support, but also the usability and familiarity
of interfaces that lower the entry barrier for most users.

In this paper, we describe Chameleon, a testbed for CS
research and education, and evaluate it from the perspective
of the two dimensions outlined above. Chameleon gives users
access to a broad array of state-of-the-art hardware, supports
deep reconfigurability and experimentation at scale as well as
isolation, preventing one experiment from impacting another.
Since its public availability date in July 2015, Chameleon has
supported 4,000+ users working on 600+ projects.

Unlike traditional CS experimental systems such as
Grid’5000 [1], Emulab/CloudLab [2, 3], or GENI [4], which
have generally been configured by technologies developed in-
house, Chameleon adapted the OpenStack mainstream open-
source cloud technology to provide its capabilities. This has
a range of practical benefits, such as familiar interfaces for
users and operators (or workforce development potential for
those not familiar with OpenStack, as they acquire transfer-
able skills), the opportunity to leverage the contributions from
a large development community, and the potential to con-
tribute back to that community in turn and thus influence
infrastructure used by many users worldwide. Beyond practi-
cal benefits, configuring an experimental platform as a cloud
also provides a direct answer in the debate over whether CS
systems research can be supported on clouds, including poten-
tially commercial clouds. More importantly, it also provides
a means of influencing that debate through direct mainstream
contributions, i.e., describing how a cloud needs to be config-
ured to support this type of research. A secondary contribution
of our paper is thus an articulation of a mainstream cloud con-
figuration that yields a platform suitable for systems research.

Perhaps the most important lesson learned from Chameleon
was that testbeds generate a wealth of experimental digital
artifacts compatible with the testbed – such as images, orches-
tration templates, or more recently, computational notebooks
– that can be used to re-play experiments. Testbeds are thus
“readers” for digital representations of experiments. This cre-
ates an opportunity for developing a sharing ecosystem in
which users can easily share and replicate each other’s experi-
ments and thereby another dimension in which a testbed can
support research. This dimension is influenced by how easily
experiments can be expressed in a shareable and replicable
form – and then how easily they can be discovered and pub-
lished. We introduced these mechanisms in Chameleon over
the last year; while they have been around for too short a time
to provide a comprehensive evaluation, we will discuss both
their structure and potential.
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2 Chameleon in a Nutshell

The Chameleon testbed consists of two operating sites: one at
University of Chicago (UC) and the other at Texas Advanced
Computing Center (TACC). Our approach to hardware seeks
to balance scale (i.e., support for HPC and Big Data exper-
iments) and diversity. Scale was achieved via investment in
12 Haswell racks (2 at UC, 10 at TACC) containing a mix of
compute and storage nodes, one with IB interconnect. More
recently, they were augmented by 3 SkyLake racks (2 at UC,
1 at TACC) and 1 CascadeLake rack at TACC. The SkyLake
racks are equipped with Corsa switches enabling experimen-
tation with Software Defined Networks (SDN). The sites are
connected by a 100G network supporting experimentation
with large flows. This investment in scale is supplemented
by smaller clusters of nodes supporting specialized experi-
ment types: they include four types of GPUs (M40s, K80s,
P100s, and P100 with NVLINK), FPGAs, low-power nodes
(ARMs, Atoms, and low-power Xeons), and memory hierar-
chy nodes equipped with almost a TB of RAM memory, and
a range of NVMes, SDDs, and HDDs. Over 4 PB in global
storage capability is additionally distributed across the sites.
About a year ago a Chameleon Associate Site (contributed
on a voluntary basis) was added at Northwestern with a mod-
est allocation of nodes equipped with 100G cards, expand-
ing Chameleon’s ability to support experiments with large
networking flows. A fine-grained and rigorously up-to-date
description of hardware can be obtained from the Chameleon
Resource Discovery services [5].

Chameleon’s capabilities are designed to allow experi-
menters to allocate and configure these resources at multiple
entry levels: users can make allocations expressed as model-
based constraints, allocate by node type, or point to a specific
node, either on-demand or via advance reservations. Allocat-
able resources range over nodes, networks, and IP addresses.
Resource configuration is supported at bare metal level and
supports custom kernel boot. The latter is achieved via the
support of whole-disk images, which include a kernel, a par-
tition map, and a bootloader. Reimaging takes places as a
sequence of booting to a provisioning ramdisk via PXE, im-
age transfer to node’s disk via iSCSI, and a local boot. This
allows kernel developers to replace the kernel as needed for
experimentation; they can also use serial console access at
boot time for debugging and snapshotting to save the revised
image. In addition, Chameleon supports network stitching
and SDN experimentation via the recently introduced Bring
Your Own Controller (BYOC) [6] abstraction built on top
of the Corsa DP2000 series OpenFlow switches. Users can
create SDN networks that are isolated from each other and the
testbed management networks by dynamically provisioned
virtual forwarding contexts (VFCs), each with its own con-
troller and subset of ports/VLANs, that are then connected to
the nodes and external circuits reserved by the user.

Configuration can also be carried out at multiple entry

levels: users can reimage individual nodes and then config-
ure their experiments manually, use orchestration capabilities
to render complex (potentially distributed) experiments that
can be automatically and repeatedly deployed, or use Jupyter
notebooks in combination with one or both of these mecha-
nisms. Monitoring is supported partly by OpenStack Gnocci
service that has been augmented to provide capabilities such
as e.g., fine-grained power monitoring. The CHameleon In-
frastructure (CHI), which implements these capabilities, is
built primarily on top of the mainstream open-source Open-
Stack platform [7] (with extensions and contributions from
our team), but also integrates resource representation, version-
ing and management tools from the Grid’5000 project [1], and
network management tools from the ExoGENI [8] project.
The implementation of CHI has been described in detail in [9].

Chameleon projects are given allocations of 20,000 SUs
(one SU is a node hour) for six months; this aims to strike a
balance between what might represent a reasonable amount of
time needed to obtain a result (a very variable measure!) and
1% of 6 months’ capacity of the initial testbed deployment
(i.e., if everybody was using their allocation at the same time
the testbed could support no more than 100 projects in that
amount of time). Allocations can be recharged (more SUs) or
renewed (longer time). In addition, user’s leases on the system
(i.e., the length of time for which resources can be allocated)
are limited to at most 7 days; these can also be extended
either programmatically or via interactions with Chameleon
operators.

Figure 1 provides a rough summary of Chameleon’s growth
in hardware and utilization, as well as users and projects.
Over the almost four and a half years of its operational life
Chameleon has supported 4,331 users across 655 unique
projects representing a broad array of research and educa-
tional uses. The growth of Chameleon usage has been steady
since the project start, with about 7 new projects per month
in the first years of operations, accelerating to eleven new
projects per month in 2019. Incremental hardware invest-
ments have been keeping up with that growth. We also ob-
serve a similar trend to that already reported by [3] where
usage is lower during summer and winter breaks and peaks
during the semester and important conferences such as the
supercomputing conference series.

3 Most Experiments for Most Experimenters

We now evaluate the key decisions made in Chameleon from
the perspective of supporting the most experiments for the
most experimenters. To evaluate the former, we will look at
whether the hardware and capabilities we provide are suffi-
cient to support experiments in our community; for the latter
we will look at quantitative measures such as the numbers of
users and experiments the tested can simultaneously support
and the types of projects it attracted.



Figure 1: Increasing usage and capacity of the testbed over
time. Monthly values are normalized to the maximum ob-
served value over time. Scalings are independent for each
metric.

3.1 Experiments
In this section we describe and evaluate both our strategy for
hardware configuration and the technical decisions we made
to provide access to this hardware such that it supports the
broadest possible set of experiments. Unless we specify oth-
erwise, the data reflects period between 09/01/15 to 12/31/19.

3.1.1 Hardware

Where resources are limited (as they inevitably are in aca-
demic testbeds) it is important that hardware investments
strike a balance between scale, i.e., support for large-scale
experimentation, such as HPC, and diversity, i.e., support for
a broad range of resources on which different research ques-
tions can be tried. Given these considerations, our hardware
investment strategy was to build up scale at the beginning of
the project (the original 12 rack Haswell deployment) and
then introduce diversity gradually with an eye towards the
types of projects that were requested the most, and the type
of resources that were utilized the most. We also held back
a “strategic reserve” of hardware investment to develop the
testbed as innovative hardware solutions emerged.

To understand how well we satisfy the need for scale we
looked at the size of lease requests for the testbed in general,
and the large Haswell partition in particular. By far the most
leases on the testbed are requests for a single node, constitut-
ing 67.19% of testbed leases (63.24% of Haswell leases) with
only 5% of requests exceeding 10 nodes (11% for Haswell).
The largest lease on the testbed was 120 nodes. Overall, this
means that our investment in scale did indeed broaden the set
of supported experiments while also allowing us to support
more simultaneous leases.

To understand how well we support the need for diverse
hardware types, we show in Figure 2 node availability against
the percentage of time that it was available, first for the overall
time since resource installation, and then during the busiest
and least busy month as measured by highest and least utiliza-

tion of the testbed as a whole (Cascade Lake was installed
very recently and is not shown). By far the most used resource
types are the four GPU types, with the two newer GPUs (GPU
P100) more in demand than the two older ones (GPU K80 and
M40), followed closely by the memory hierarchy nodes. On
the other end of the spectrum, ARMs, Atoms, and low-power
Xeons—targeting specialized power experiments—are used
the least. The large-scale resources, Haswells and Skylakes,
as well as the FPGAs, occupy the middle.

While these categorizations are roughly consistent across
specific time periods and overall, some important details are
different. For example, the availability of the GPU P100
NVLINK is less in both most and least used month than the
overall availability graph would suggest; this is due in signif-
icant part to the fact that resources are typically much less
utilized immediately after they are introduced as the knowl-
edge of their availability has yet to be absorbed. In general,
periodic usage patterns might fluctuate due to specific confer-
ence deadlines or teaching/workshop use.

One lesson learned from our experiences is the need for
adaptation. Overall, introducing diversity to the testbed grad-
ually allowed us to make changes to respond to community
demand, shaped by the evolving nature of the research needs.
For example, based on the response to our early K80 and
M40 deployments driven by emergent interest in machine
learning, and combined with less demand for a low-power
processors, we re-budgeted some of our planned investment
between those categories and also invested our “strategic re-
serve” into more GPUs. This meant that we were able to
provide ample support for low-power experimentation while
keeping up with emergent demands. Because of periodic fluc-
tuations it is hard to formulate recommendations on when
such change should be considered; based on our experiences
it is likely to occur when usage moves to the area of the graph
between the large-scale and memory hierarchy resources.

3.1.2 Capabilities

Resource Description. Much of the usefulness of the testbed
relies on the manner in which users gain access to hard-
ware. To do that, users have to describe the resources they
need. Commercial clouds offer a variety of “instances”, some-
times with vaguely described properties (e.g., “high I/O band-
width”). Experimental testbeds allow users to choose a spe-
cific hardware type and sometimes seek to ensure that all
servers of the same type have comparable performance [3,10].
In contrast, we take the view that performance variability is a
fact of life and often a research topic in itself. Our approach
therefore is to allow users to choose resources on a range of
levels: from a model description expressed as a set of con-
straints (e.g., “memory of at least X” or “X nodes situated
on the same rack”), through describing hardware type (e.g., a
Skylake node), or by referring to a specific node.

Analyzing Chameleon lease requests made between 09/16



Figure 2: The usage of Chameleon hardware types expressed as resource availability plotted against the percentage of time in
which it was available for (a) overall availability since resource installation, (b) the least and (c) most utilized month.

and 11/19, we find that the majority (89.24%) were created us-
ing a single constraint (the rest are leases using either no con-
straint or multiple constraints; 9.5% and 1.26%, respectively).
Of the single constraint leases, 90.18% were created by speci-
fying the hardware type and only 3.38% specify node uid (a
specific node). However, when we look at single-constraint
leases that are created more than 7 days in advance, the per-
cent of leases with node type constraint drops to 59.91%,
while the percent of leases with uid increases to 18.45%,
which shows that users who need a specific node are willing
to wait for it rather than replace it with something else.

Overall, a hardware type is clearly the most requested
quality. Specific nodes are requested relatively infrequently,
though some experimenters do need them and model-based
descriptions based on high-level constraints are rare. While it
is often tempting to think that a model-based description is
the ideal, the following anecdote illustrates the limitations of
this approach. Using a model-based request (“memory greater
than X”), one of our users was assigned an ARM node; this
led to a difficulty since although this was a correct match
for the experimental model, the user’s tooling did not work
on ARMs. In subsequent conversation with our support staff
the user was advised to browse our discovery services, found
the Chameleon memory hierarchy nodes, and concluded that
with those nodes he would be able to design a more ambitious
experiment. We derive two lessons from this: first, models are
not all that is needed for determining the right experimental
resources (logistical concerns need to be taken into account
as well); second, resource discovery phase is an essential part
of an the experimental workflow and critical to taking full
advantage of the testbed.

Allocatable Resources. Another matter of interaction with
the testbed consists of being able to obtain resources in a
timely manner. Commercial clouds use the metaphor of an
“endless resource” always available on-demand – in practice
no resource is of course endless even in commercial clouds
(e.g., the current initial limit at AWS is 256 VCPUs [11]) –

though some are sufficiently large. Thus, the ability to grace-
fully deal with availability limitations is important, particu-
larly in academic clouds where we try to maximize small
scale resource investment.

To provide such ability we introduced the abstraction of
an allocatable resource described in [12]. In brief, an allocat-
able resource allows users to manage a resource allocation
in terms of both time and resource assigned to the allocation
(i.e., when an allocation starts and ends, and well as how many
nodes belong to it). In particular, the ability to manage the
start time is sometimes referred to as “advance reservations”
and is a generalization of on-demand availability provided by
commercial clouds (i.e., on-demand is an advance reservation
with start time set to “now”). The resources can be of vari-
ous types and can be managed to fulfill different conditions;
in Chameleon currently the managed allocatable resources
consist of nodes, VLANs, and public IP addresses. The imple-
mentation of this capability and its contribution to OpenStack
was initiated by the Chameleon team.

As [12] demonstrates, allocatable resources, and advance
reservations in particular, are useful in providing access to
scarce resources: the scarcer the resource, the more likely
users are to make an advance reservation to ensure availability,
and the longer in advance this reservation is likely to be made.
In figure 3, we provide a more detailed demonstration of
this concept: we scatter plot all leases made for three types of
resources: Haswell compute nodes at TACC (largest partition),
Skylake compute nodes at UC (largest partition), and our GPU
P100 cluster (16 nodes), noting the number of nodes requested
and the reservation lead time.

We see that the GPU P100 nodes (one of the most utilized
resources per Figure 3) have by far the longest advance reser-
vation lead times even though only very few users reserve
more than one node. On the other hand, Haswell@TACC,
used for experiments at scale, show a significantly higher pro-
portion of leases with multiple nodes (with the max being 85).
While many of them are created with some lead time, it was



Figure 3: Node counts vs. advance reservation lead time of advanced leases for (a) GPU_P100, (b) Haswell, and (c) Skylake

possible to create some large leases on-demand; they are cor-
related to summer use (low utilization) and no leases with size
in the 95th percentile were available after 2016 as the testbed
became popular. This trend is even more pronounced when
looking at the Skylake nodes, which are a scarcer resource
than Haswells (64 versus 278 for largest partition) but also
support experiments at scale. Advance reservations are thus
useful in managing two types of resource scarcity: very scarce
resources (e.g., GPU P100) will require high lead times, but
relatively abundant resources (e.g., Haswells) can become
scarce if a large reservation is requested.

The end time of a resource reservation can also be extended
programmatically, although according to our policies this can
only take place within 48 hours of lease expiration and of
course only if the resource is not reserved by another user
(a policy exception can also be requested via the help desk.).
This last consideration limits the practical usefulness of this
feature in the case of scarce resources, as it is likely that they
will have been reserved by the time the extension window
becomes active. For this reason, programmatic extension re-
quests have only been successful in relatively few cases in
practice, e.g., during the last year at UC only 5.4% leases got
extended in this way; though half of them more than once.

Separation of allocation and configuration. Unlike com-
mercial clouds where resource allocation and image deploy-
ment are one operation, Chameleon separates them to allow
users to map different images to an allocation. This capability
proved relatively popular with experimenters: 22.07% of the
allocations had more than one instance deployed, and roughly
half of those (9.17% of all the allocations) had more than
one unique instance (i.e., associated with a different image)
deployed; the average number of instances deployed within
one allocation is 1.45 (with max being 12) and of unique
instances is 1.12 (with max being 10).

Networking. Network isolation is an important property
in that it allows non-standard IP configuration, potentially dis-
ruptive services, or security experiments that analyse or inten-
tionally attack other nodes on the isolated network. Similarly
to many of the base Chameleon features, we implemented

this via standard OpenStack services; within each geographic
site, users can create Chameleon networks that are isolated
within unrestricted VLANs (i.e., no firewalls) and logically
connect any number and type of nodes.

Chameleon’s “Bring Your Own Controller” (BYOC) [6]
capability extends these isolated networks by providing direct
user control of network flows and configuration via a standard
or customized OpenFlow 1.3 controller. Though OpenStack
did not support BYOC out of the box, its modular design en-
abled us to implement the feature as a custom Neutron plugin,
which enables users to specify the IP and port of the user’s
OpenFlow controller (whether provisioned on Chameleon or
externally). Chameleon uses Corsa DP2000 series switches to
dynamically create isolated OpenFlow 1.3 network slices in
hardware operating at full performance (10 Gbps node ports
and a 100 Gbps uplink); this is in contrast to an approach
which provides coarse control of whole OpenFlow switches
from a static pool of hardware as implemented by CloudLab.
BYOC enables many experiments from basic hands-on edu-
cational experiences with OpenFlow to advanced networking
experiments that optimize performance of network traffic or
identify and remedy security breaches by analysing low-level
traffic behavior. Despite the fact that BYOC networking is
new and targeted at highly specialized and advanced users,
there have been already been 11 unique projects (representing
4% of active projects over the time period) that have deployed
OpenFlow experiments on the Chicago site alone.

Networking experiments on Chameleon are not limited to
the Chameleon testbed alone. Users can create dedicated layer
2 circuits between Chameleon networks and external facilities
such as ExoGENI, campus laboratories, public clouds, and
other Chameleon sites; creating dynamic connections of this
type is often called “stitching” [4]. ExoGENI provides a dy-
namic stitching service that connects a wide collection of par-
ticipating facilities, including Chameleon. Chameleon users
can create isolated stitched links between their networks (in-
cluding BYOC networks) and ExoGENI and can extend those
links across ExoGENI to remote facilities. In addition, mul-
tiple stitched links can be connected to a single Chameleon



network, enabling user-controlled wide-area multi-path rout-
ing experiments. To date, 22 unique projects (representing
8% of active projects over the feature’s life time) that rely
on network stitching have created 920 stitched links between
remote facilities using ExoGENI.

Orchestration. Once a lease is created, users can config-
ure it using Chameleon provided images, create their own
(often, but not always, derived from Chameleon provided im-
ages), or use complex appliances [13], representing concepts
such as a cluster, a cloud, or a networking experiment, that
can be deployed “with one click” and then repeated in future
deployments, similar to CloudLab profiles [3]. These experi-
ments are configured using images in conjunction with Heat
orchestration templates [14] that define how to deploy and
contextualize [15] them to create the desired integrated en-
vironment and processes. Using Heat, an active Chameleon
topology can be modified (by e.g., adding or removing nodes,
altering MTUs on the network, or changing a post-boot step
for a particular node) through changes to the underlying Heat
template; the orchestration system applies the delta without
forcing re-creation of the entire topology. The choice to de-
couple allocation and configuration made this functionality
easier: because a set of resources is allocated explicitly to a
user for a time period, any topological or software/firmware
configuration can vary without breaking the researcher’s as-
sumptions about the underlying hardware.

Consistent with our decision to make the testbed available
at various levels of access, the use of orchestration is optional
for Chameleon users. Using orchestration/Heat provides re-
peatability at the cost of an additional up-front investment
(i.e., developing an orchestration template) and thus tends to
be used in later stages of a project when experimental config-
uration is settled on. Since users often develop orchestration
templates by modifying existing ones, the Chameleon project
provides 3 complex appliances (images+Heat template) and
another 14 individually-supported complex appliances are
hosted on our appliance catalog; the most popular are MPI
bare-metal cluster (MPICH3), Ryu OpenFlow Controller, and
OpenFlow - QuickStart appliance. To date, 81 Chameleon
projects have used Heat, among those 20 were in systems, 17
in education, and 12 in networking, with the rest ranging over
a variety of topics including security, power management,
and others. The usage data since 10/16 when this feature was
introduced show a steady upward trend in orchestrated deploy-
ments: 94 (2017), 155 (2018), and 405 (2019), though more
recently users were increasingly using Jupyter notebooks or
scripting for orchestration. Overall, while orchestration is an
advanced feature and thus the uptake is slow, it is proving a
useful tool to express a range of experiments.

Configuring complex experiments, even when automated
via orchestration, can still take significant time, as packages
need to be installed, configuration scripts run, and tests ex-
ecuted. Thus, while separating allocation and configuration
proved a successful decision, users often ask for functionality

Figure 4: The cumulative distribution functions (CDFs) of
lease percent usage for the last quarter of 2018 and 2019.

that effectively recombines these actions, i.e., automatically
triggers the deployment of an orchestrated experiment when a
user’s advance reservation comes into effect. To provide it, we
introduced the automated deployment feature [16] in 01/19
that automatically triggers the deployment of experiments
orchestrated with Heat. So far it has been little used while still
being often requested; this likely points to the need for more
energetic education efforts as well potentially to the need of
extending this capability to other orchestration methods, in
particular the increasingly popular Jupyter-based approach.

Managing User Behavior. Perhaps the most significant
challenge of operating Chameleon, common to all academic
cloud resources, is ensuring fair sharing of the resource. Un-
like in HPC datacenters, where actual resource use is tied to
the submission of a specific program (such that if the pro-
gram fails the resource grant is withdrawn), access to cloud
resources is given out on an open-ended basis. Commercial
clouds create incentive to use no more than is needed by
charging for the duration of access. Academic clouds, such as
Chameleon, seek to provide a similar incentive via allocation
policies (see Section 2); this is generally less successful since
users can recharge or renew their allocation relatively easily.
In fact, we found this measure to be inadequate on its own
early in the project as users created leases to “put a hold”
on resources that then went unused, significantly reducing
testbed capacity for others. This led us to introduce the (exten-
sible) 7 day lease limit described earlier which improved fair
sharing at the cost of imposing extra overhead on experiments
that legitimately need more than 7 days. However, we still
see leases on the testbed that merely hold resources without
using them.

To manage this situation, we introduced a policy whereby
users are expected to start using their lease within a certain
amount of time from deployment. This policy is enforced by
a “lease reaper” (deployed in 09/19) that monitors the use of
a lease, sends a reminder to users not using their leases, and
terminates them if still unused after a certain period of time.

Figure 4 shows a comparison of lease usage for the last
quarter of 2018 and last quarter of 2019 (before and after



the lease reaper was introduced). While it is natural that re-
sources in a lease may be unutilized for some time (e.g.,
between deployment of different images), we see that in 2018
(without lease reaper) a large percentage of leases is underuti-
lizing resources to a significant extent. However, in 2019 (with
lease reaper) the situation improved: it went from 40.79% to
45.95% fully-used leases and from 66.92% to 71.19% 80%-
used leases. More sophisticated ways of ascertaining if a lease
is actually being used are likely to tighten the gap between
allocated and used leases further, but at the same time become
open to “gaming” by users emulating lease usage via artificial
means, reducing their effectiveness. Thus, striking the right
balance of incentive and access to promote fair sharing in
academic environments is still an open question.

Summary. On the whole, we found that the key design
decisions we took, whether by introducing new hardware or
new capabilities, led to expanding the set of experiments avail-
able to our user community, and were thus quickly embraced.
While we still receive new feature requests, they are increas-
ingly smaller and come less often. At the same time, a signifi-
cant lesson learned in the process of operating Chameleon is
that no research testbed is ever complete because the set of
desired experiments is constantly expanding. As the research
frontier advances emergent research opportunities create the
need for new scientific instruments – or new features in exist-
ing scientific instruments – to support their exploration. While
setting aside a strategic reserve in hardware served us well,
the extent to which this phenomenon drove development was
surprising: not only did we need to adapt the system to lever-
age new opportunities in hardware (such as e.g., providing the
BYOC capability on top of the Corsa switches), we needed to
develop abstractions (such as e.g., the allocatable resources)
to integrate those extensions in the experimental workflow.
The most significant types of experiments that Chameleon
does not support yet are thus in emergent topics – for exam-
ple, on the intersection of Internet of Things (IoT) and cloud
computing as well as machine learning.

3.2 Experimenters

Supporting as many users as possible will be influenced by
two factors: how many users a testbed can sustain by manag-
ing the cost of users and experiments and how many users it
can attract by adapting itself to the needs of different commu-
nities; this section will discuss how well Chameleon was able
to achieve both.

Isolation and Automation. Providing an appropriate level
of isolation captures an important trade-off: it should be fine-
grained enough to divide the testbed efficiently between mul-
tiple experiments – but also coarse-grained enough to sat-
isfy the isolation needs of a specific experiment. Since the
granularity often goes with the level of isolation a specific
mechanism provides [12] we must be careful to not sacrifice
the required level of isolation; at the same time we want to

Figure 5: The numbers of active users and projects over time.
The trend lines average the number of users/projects over 6
month period.

serve as many users as possible. In Chameleon, we navigate
this trade-off by configuring the bulk of the testbed with CHI
while setting aside two racks (originally three) provided as
a standard OpenStack/KVM cloud. This finer-grained sys-
tem isolation that this alternative cloud provides means that
multiple user VMs can be deployed on one node instead of
allocating a whole bare metal node (though it does not provide
the performance isolation that a bare metal offers). Because
of this efficiency, we were also able to offer a different policy:
users can make open-ended deployments on the KVM parti-
tion while CHI (bare metal) leases are limited as to 7 days at
most. Last but not least, it is more suited to less-experienced
users.

Our data indicate that 209 Chameleon projects (22.94% of
all Chameleon projects) used our KVM partition at least once.
Among those projects, 12.92% are projects in CS education.
About 26.16% of our total number of users used the partition,
most of them assigned to an educational project. Most VMs
(71.52%) are deployed for an hour or less and only 3.18%
leverage the ability to claim testbed resources for more than
one week. The median daily count of deployed VMs is 344
(with max/min of 1490/29); each of those would have likely
occupied a bare metal node otherwise. All those statistics
point to significant educational use; given the number of users
and projects overall this seems a good investment for what
currently constitutes only 16% of our total Haswell system
and even smaller fraction of the overall testbed.

Supporting Volume. While isolation method determines
the unit of sharing, the largest factor in the ability to sup-
port as many users as possible is automation since it lowers
the per-user and per-experiment cost. We noted earlier that
Chameleon is a production testbed, i.e., a testbed that supports
production services that yield individual/breakable testbeds.
Consistent with this definition, we define Chameleon testbed
functions as only those experiments that are accessible to
users in an automated manner (while we also support experi-
ments requiring manual intervention from operators and spe-
cial requests, we consider them support functions, not testbed
functions). We now examine indicators of how much user
volume the testbed can support.

We first asked how many active users the testbed supported



Figure 6: (A) Total leases created each month. (B) Maximum
simultaneous active leases by month. The trend lines average
the number of leases over 6 month period.

overtime. We see that numbers of active users follow the
general pattern of slow and busy months (semesters versus
breaks) that we have already seen in Figure 5. However, al-
though we saw that the cumulative number of users was ris-
ing, it is interesting to note that the average number of active
users and projects grew significantly about two years after
the testbed has became available (fall of 2017). It is hard to
pinpoint this to any one reason but possibilities include a lag
that it takes for a new testbed to become established, the in-
cremental introduction of features that broadened the set of
supported experiments, and our first Chameleon User Meet-
ing held just before the trend increase. At peaks, the testbed
supported about 200 active users; this is twice as much as the
lower bound that our allocation policy is based on (Section
2); luckily not all users are living up to their allocations!

We then asked how many leases and simultaneous leases
users were able to create on a per month basis. The result for
unique leases is shown in Figure 6 (A). We see that the trends
are consistent with the number of active users reflecting the
usage patterns in a similar way and picking up around the
same time, though the growth trend is still continuing. The
result for simultaneous leases (i.e., for each month, we found
the max number of leases happening at the same time) is
shown in Figure 6 (B); we see that the testbed has sustained
up to 300 simultaneous ongoing experiments, but the trends
picked up about a year later than trends for active users and
experiment counts; it is clear that the testbed is now becoming
more saturated.

Support Cost. Another metric important in the discussion
of any testbed is support costs, specifically the time effort
required by the team. Chameleon users have submitted 3,167
technical help desk tickets, averaging roughly 13 tickets every
week and less than 1 ticket per user. On average users receive
a reply within 15 hours and their issue is completely resolved
within 2 weeks. These trended down over time: in 2019 the

average response time was 16 hours, while the resolution time
was 6 days. The costliest tickets concern hardware failures,
which are often difficult to diagnose and/or require ordering
new parts and performing maintenance. Cutting-edge or non-
standard hardware and firmware also pose problems for sup-
port staff, as documentation might not be extensive (or even
exist) and having expertise at hand is unlikely. In all cases,
an ounce of prevention is worth a pound of cure: we have
deployed or implemented an operational model integrating
early detection (e.g., daily/hourly “happy path” tests of com-
mon user flows, live-monitoring with Prometheus [17], and a
catalogue of alertable issues and resolution steps) and auto-
mated remediation (in the form of “hammers”, i.e., bots that
periodically check for and fix irregularities in testbed usage
and performance). We additionally automate most common
operator tasks, such as building new base images, deploying
patches or configuration changes to the control plane, and
taking nodes in or out of maintenance. Details of Chameleon
operations has been published in [18].

Another indicator of cost in a system where users are given
significant privileges is the cost of security management. We
employ a range of standard security practices designed to
make the system more secure: project PIs are vetted and as-
sume responsibility for users on their projects; we provide
base images configured and maintained by our team with rea-
sonable security defaults and SSH key pairs for authentication;
the management network is isolated from tenant networks;
and we use intrusion detection system (IDS) alerts across the
entire deployment. Since the system went public we’ve had
a number of security incidents; most are caused by users ei-
ther unknowingly or deliberately shirking best practices, e.g.,
using images with a known administrative password or using
outdated software with known exploits – the latter sometimes
to be compatible with benchmarks and other research soft-
ware. The most typical types of exploits result in activities
such as distributed denial of service (DDoS) attacks ( ~40%
incidents) or bitcoin mining ( ~36% incidents). Those are typ-
ically identified via IDS systems operated on sites and trigger
well-defined security procedures in response usually involv-
ing user/PI cooperation. So far, we’ve only had one incident
involving malicious users in the first quarter of 2020 which
shows that our PI vetting methods work well on the whole.
Considering the nature of attacks to date the greatest improve-
ment would probably be effected by more user training in
techniques such as setting up bastion host for when insecure
researchware has to be used as well as general training in
operational security.

Community. Chameleon users come from 168 different
institutions, the vast majority of which are US colleges and
universities from 40 states and Puerto Rico, including 11 mi-
nority serving institutions. While most of the research projects
we support are in computer science, 54 identify themselves as
being from outside of computing disciplines, primarily in life
sciences, astronomy and other fields. By analyzing project



abstracts we see that roughly 12% of all projects relate to
cybersecurity, 20% are involved in machine learning, 10%
are in edge computing or IoT applications, 5% are doing
research work relating to containers (scheduling, virtualiza-
tion, or performance), 2% are investigating software-defined
networking. Several hundred grants are reported by users as
the source of funding; the vast majority of these are from
NSF, and within those the vast majority are spread among
all divisions within CISE. About 5% of grants are supported
by the DOE, DARPA, or the Air Force Office of Sponsored
Research. A handful of projects are supported by industry,
and several more have international support.

Publications are a complicated metric to track as they tend
to be a lagging indicator; many happen after the allocation is
complete, when there are few incentives for users to report
them to the project. Further, the primary way we capture
publication counts is through self-reporting when users seek a
renewal of their allocation; while this is an incomplete method
it still represents a useful lower bound. Through 2019, users
have self-reported about 275 publications relating to their
work on Chameleon, with many projects still active. There
are 75 referred journal articles among these, with close to 200
conference publications. The spread of publications is fairly
wide, with no clear concentrations in particular conferences
or journals. As would be expected for a testbed, growth over
time is dramatic and lagging: of the 75 journal papers, only 3
were published in the first project year, 8 in the second, 10 in
the third, 23 in the fourth, and 31 have been published so far
in the fifth year with several months remaining.

In addition to research usage, there is substantial educa-
tional use of the system. 45 projects support classroom in-
struction, often multiple classes over multiple semesters; all
but four of these projects support courses in CS departments
at 41 different schools. In total, the education projects have
used about 9% of the total time available on Chameleon to
date (roughly 675,000 node-hours), and they represent about
9% of the total projects – so an average classroom project
uses about 15,000 node-hours, matching the usage of a typical
research project.

One measure of the satisfaction of the user community is
persistence. Projects are initially allocated time on the system
for 6 months, and at the end of the year they must seek a
renewal or extension. Of the projects that have reached the
end of their initial year of allocation, about three-quarters of
all projects have sought to renew their allocations, indicating
that they find value in the use of the system. Many projects
seek multiple renewals – in fact thirty-three of the original
projects from the first year have been renewed multiple times
and counting!

4 Building a Testbed on Top of Mainstream
Cloud Implementation

When the Chameleon project started, we were presented with
the unique opportunity of building the testbed on top of the
then maturing cloud infrastructure: the first version of the
OpenStack Ironic component [19], implementing bare metal
reconfiguration (which we knew would be an indispensable
capability of the system) has been released a few months prior
to the project start, and while not yet an official part of the sys-
tem has already been used in some bare metal deployments.
The chance to base a testbed for cloud computing research
on a mainstream open source implementation held out many
possibilities, but will it be enough to support all the experi-
ments that needed to be supported in the way they needed to
be supported? After thorough evaluation of the system and
development of a few alternative risk-mitigating strategies
we decided that capabilities we needed were there—or were
within reach in that they could be developed by our team.
This section presents an analysis of the advantages and cost
of taking this approach.

One practical benefit of using OpenStack is that it provides
familiar interfaces to users and operators. The 2018 Open-
Stack User Survey [20] (most recent) included 858 OpenStack
deployments across 441 organizations and 63 countries; of
those organizations, 13% were categorized as academic or
research-oriented. Those include major scientific institutions
such as CERN [21], NeCTAR [22], and NASA JPL [23], and a
formal Scientific Special Interest Group (SIG) [24] for Open-
Stack’s use in science domains has existed since 2016 [25].
Since the introduction of the OpenStack Administrator cer-
tification three years ago, 3,000 individuals in 77 countries
have taken the test [26]. All this not only creates a base of
familiarity with OpenStack for users and operators – but also
ensures that such familiarity is a transferable skill and thus
valuable for workforce development. Finally, the Net Pro-
moter Score [27] of 41 reported by the survey (up from 25
in 2017) indicates that the OpenStack environment contin-
ues to improve in terms of usability and that users enjoy the
experience overall.

Another benefit of working with a mainstream platform
is the ability to leverage and adapt the work of a large com-
munity which helps keep our development and operations
costs down. Over 8,400 individuals have contributed code
to OpenStack, with 1,000-2,500 contributors participating
in each major release [28]. Leveraging their contributions,
over the lifetime of the project we were able to offer our
community new key features such as whole disk image boot,
multi-tenant networking, serial console integration, support
for non-x86 architectures, and user-customizable firewalls—
simply by upgrading to a new OpenStack version. Future
capabilities already possible due to upstream contributions in-
clude self-service BIOS customization and detachable remote
storage; both have been common user requests. From the



operator’s perspective, deploying and managing Chameleon
was made simpler and more reliable by the Kolla project,
which provides a packaging of OpenStack as Docker contain-
ers [29] and a set of highly-configurable Ansible provisioning
scripts [30] to orchestrate the setup and maintenance of the
deployment. Further, ~6,000 individuals have been involved
in reviewing all code changes [31]: thus, by using a main-
stream infrastructure we also benefit from a built-in large-
scale quality control mechanism. No less valuable has been
the access to the existing documentation and support systems
within the community: the openstack-discuss mailing list [32]
sees between 500-1000 messages each month, the OpenStack
Q&A forum [33] has over 18,000 answered questions, and on
many occasions we were able to get a workarounds or patches
for bugs within days simply by filing a ticket to the official
tracker.

The flip side of leveraging contributions of others is the
opportunity to contribute to and shape a mainstream infras-
tructure. On a practical level, this magnifies our investment in
the infrastructure and our broader impacts as any new features
and additions we make to OpenStack are also impacting com-
munities beyond the testbed. Because its hardware resources
have always been constrained relative to the demands of its
user community, Chameleon required a system for allocat-
ing and managing resources (including advance reservations),
which our team implemented by reviving and significantly
improving the OpenStack Blazar project. This attracted the
interest of others and we were subsequently able to partner
on development with contributors from NTT (Japan) and DO-
COMO Euro-Labs (Germany) who use the component in
Software Defined Networking applications. As a result of this
collaboration, Blazar became an official top-level OpenStack
component in 09/17 and has been included in each OpenStack
releases since Queens. Other significant new features devel-
oped by the Chameleon team include bare metal snapshotting
and enablement of slice creation via integration with Exo-
GENI stitching implementation; in addition, we made many
smaller contributions in the form of bug fixes and patches.

These advantages are offset by some costs. Since it solves a
complex problem, OpenStack is complex; thus operating, and
in particular extending it, requires both development skills
and deep expertise in the underlying systems and concepts,
putting pressure on operator hours and level of skill. The
most problematic manifestation of this complexity in our ex-
perience used to be OpenStack upgrades; this has improved
significantly with tools that aid operators in these tasks, such
as the aforementioned Kolla project. The size and structure
of the open source community imposes its own overhead and
requires commitments both in process and in time: patches
must be reviewed, meetings must be attended, changes must
be formally proposed and approved, and documentation and
tests must be written. These commitments are the price of ad-
mission to an open-source community that, in our experience,
ultimately returns the investment many times over in the form

of support, debugging, development, and partnership.
Looking beyond practical benefits, building on top of a

mainstream infrastructure helps settle a point of intellectual
interest in that it provides a direct answer to the question: can
clouds support CS system experimentation? While different
clouds will of course be configured differently, Chameleon
represents a configuration that satisfies this condition; we de-
scribe this configuration in this paper but it is also expressed in
practical form via code, recipes, and settings that are publicly
available and suitable for replication whether in academia or
commercially. Like the Chameleon interfaces we support, that
recipe has multiple “entry points”: users may elect to simply
install OpenStack with our contributions—they may elect to
replicate the Chameleon configuration in every detail—or
they may choose something in between. We facilitate this
by providing a packaging of Chameleon Infrastructure (CHI)
that contains not only OpenStack but also extensions includ-
ing Grid’5000 and ExoGENI additions, as well as an oper-
ational model we developed that makes clouds of this type
cost-effective to provide. This packaging, called CHI-in-a-
Box [34], has recently been installed at Northwestern Uni-
versity and augmented Chameleon capabilities by providing
modest but unique networking hardware.

5 Fostering Replicability and Sharing

Perhaps the most important lesson learned from Chameleon
is that testbeds provide not only a platform for instruments
but also generate shareable digital artifacts such as images,
orchestration templates, datasets, tools, notebooks, and others.
Those artifacts typically represent either a complete experi-
ment or an important part of one and can be used to reenact
it on the testbed on which it was created. For example, over
the lifetime of the Chameleon testbed, users created 120,000
disk images and 31,000 orchestration templates that can be
used for such purpose. This presents an opportunity: since the
generated artifacts can be used to repeat experiments, shar-
ing them should allow others to repeat experiments, introduce
variation, or extend experiments more easily. We posit that fos-
tering that sharing will contribute to the overall goal of provid-
ing a scientific instrument to advance CS systems research by
both reducing time to discovery and providing a more fertile
ground for sharing of ideas. The question arises how specifi-
cally experiments should be represented and structured—and
then how specifically they should be shared.

Chameleon has supported a variety of mechanisms to aid
repeatability over its lifetime. First, the Chameleon hardware
is versioned, which allows users to easily identify any changes
which would introduce variation. Users can also version the
images they configure, and publish them in a catalog. Since
this still requires a user to keep track of which appliances were
deployed on which testbed version, we introduced a system,
called Chameleon’s Experiment Précis [35], which captures
all the distributed events generated by a user in the testbed,



and presents him or her with a summary (a précis) of their
experiment. Then, working with an accurate and impartial
record of their work, the user can filter or preview the events to
include only the relevant ones. The précis data can be used to
generate a description of the experiment in English, or poten-
tially an actionable description of the experiment in the form
of orchestration templates or commands that will reproduce
the experiment. Generating Heat orchestration templates in
this way is in fact the objective of an OpenStack Flame [36]
tool. Overall, the Experiment Précis is somewhat analogous
to a shell’s “history” command with the critical difference
that it captures distributed rather than local events – though
its output is less "actionable".

This raises the question of what an actionable representa-
tion of an experiment should ideally look like. Orchestration
systems such as profiles in CloudLab or Heat in Chameleon
require adhering to a strict machine-readable syntax, often
formulating that syntax in a declarative text file, or providing
a layer of indirection that allows the user to work in a higher-
order language. Furthermore, these systems are transactional,
either fulfilling the topology or not, making complex configu-
rations difficult to develop and iterate upon. Proposed work-
flow systems [37] experience similar challenges [38]. They
fundamental problem from the user perspective in these cases
is that a user must invest extra time to make an experiment
reproducible. This leads to the “reproducibility dilemma”: the
user needs to choose whether to invest time into making an ex-
periment replicable or continuing with other research. Ideally,
a system that represents an experiment would allow the ex-
perimenter to develop it gradually and interactively reflecting
the often meandering creative process, support experimental
“story-telling” for human as opposed to just machine users,
and—true to our philosophy—be an open source project in
mainstream use.

In researching solutions to this problem, we considered
computational notebooks such as Wolfram Mathematica [39]
and Jupyter Notebooks [40], which combine expository text,
executable code, and presentation of results in one human-
readable, interactive document. Jupyter’s newfound ubiquity
across the research landscape and its extensible architecture
provided fertile ground for exploration; to leverage it, we in-
tegrated Jupyter and Chameleon with the intent to reduce the
gap between designing an experiment and sharing it. As a
result, users can log in to Chameleon Jupyter server with their
testbed credentials; these credentials are implicitly bound
to the user’s isolated Jupyter Notebook server, allowing the
user to call Chameleon APIs (via the CLI interface or Python
APIs) directly within their notebook’s code blocks. This al-
lows a notebook to completely re-create a pre-existing testbed
topology. We additionally mounted Chameleon’s object store
as a virtual drive in the Jupyter application to allow shared
storage and therefore collaboration between users. The user’s
Jupyter server comes pre-installed with several libraries that
aid interfacing with an experiment on Chameleon [41] (e.g.,

creating a lease and launching an instance and then execut-
ing commands remotely via SSH). As we’ve improved the
Jupyter interface to Chameleon it has seen an increasing share
of testbed usage; over the last year 10% of our monthly active
users have been using Jupyter as their interface to the system.

While the notebook may be an appropriate way to package
an experiment without disrupting the flow of research, the
challenge of properly disseminating and discovering these
artifacts remains. At the end of 2019, we implemented the
first version of a Sharing Portal [42] to allow users to pub-
lish and discover these notebook-based artifacts. Users can
publish a set of files directly from the Jupyter interface via a
custom UI extension; the files are compacted into an archive
and published to CERN’s Zenodo [43] for long-term storage,
where they are also assigned a DOI for citation. The Sharing
Portal then maintains a reference to the published artifact
along with helpful metadata such as tags and documentation.
Other Chameleon users can search for artifacts within the
portal and “re-play” them on Chameleon with one click: an
ephemeral Jupyter server tied to the artifact is dynamically
provisioned, including additional software dependencies de-
fined by the publisher. Users can version their artifacts by
publishing a new set of files and creating a new version (and
DOI) on Zenodo. Though too early in its lifetime to provide
a quantitative analysis of its impact, we expect to continue
investing in this area going forward.

6 Related work

Some of our design decisions in Chameleon were informed
by our earlier work on experimental testbeds including Future-
Grid [44, 45] and ExoGENI [8], as well as our long standing
close collaboration with Grid’5000 [1]. In particular, we are
indebted to the latter two projects for not only providing in-
sight but also specific capabilities that were directly integrated
into the testbed; the stitching capabilities in the case of Ex-
oGENI and the resource representation and related tooling
in the case of Grid’5000. At the same time, Chameleon rep-
resents a significantly different approach from any of them
in many ways, most prominently in that it is configured for
cloud computing research (unlike ExoGENI), supports bare
metal reconfiguration (unlike FutureGrid), and is based on a
mainstream infrastructure (unlike Grid’5000).

We additionally leverage the experience gained by the rich
history of CS testbeds, ranging from those specializing in net-
working (PlanetLab [46], GENI [4], Emulab [2], OneLab [47],
CENI [48]) and wireless/IoT (ORBIT [49], FIT [50], City-
Lab [51]) to systems (CloudLab [3]) and security (Deter-
Lab [52]); Chameleon complements these systems in that it
largely focuses on a different area of research and thus sup-
ports different types of experiments. The most similar testbed
to Chameleon is CloudLab (itself another NSFFutureCloud
testbed). We differ from CloudLab primarily in specific de-
sign decisions we made in building the system, many of which



are described in this paper as well as in our early emphasis
on reproducibility and sharing by integration of tools like Ex-
periment Précis and Jupyter notebooks. The most significant
difference however is that we built Chameleon on top of a
mainstream cloud infrastructure for reasons described above.

Clouds are being increasingly used in science and many
of them elect to use OpenStack, e.g., Jetstream [53], Aris-
totle [54], Comet [55], Bridges [56], and NeCTAR [22] all
represent different configurations of the system. The most sig-
nificant difference from Chameleon is that these are relatively
standard cloud configurations, designed primarily to support
domain science applications rather than CS experimentation,
and differ from Chameleon significantly on key features such
as bare metal reconfiguration. However, there are significant
commonalities on the operations side ensuring that we are
able to leverage their contributions, with the OpenStack SIG
being one avenue of communication. An interesting recent ad-
dition is the CloudBank project [57], which will provide tools,
training, and credits for CS research on virtualized commer-
cial clouds; since we provide similar services via our KVM
cloud, we look forward to working with this project.

Reproducibility of CS experiments [58] is another area
in which our contributions relate to other work in the field.
Several projects have used Jupyter notebooks as a mecha-
nism for encapsulating and reproducing research [59, 60].
Managed “Notebook-as-a-Service” platforms e.g., CodeO-
cean [61], WholeTale [62], and Nextjournal [63] have further
elevated the profile and utility of Jupyter for this purpose.
Workflow solutions such as Popper [37] aim to aid repro-
ducibility in a different way and are more relevant to our
efforts on Experiment Précis. Chameleon differs from all of
these examples in that it integrates reproducibility tools in the
context of a testbed, allowing users to leverage a common-
ality of platform to replicate not only the process of experi-
mentation, but also the requisite hardware configurations and
topologies.

7 Conclusions

Chameleon represents a unique testbed in that it expresses the
capabilities needed for CS research in terms of mainstream
cloud functionality. This is an important step to understand
how such capabilities may be supported more ubiquitously,
with more discernment, and in a more cost-effective manner.
This paper discusses the specific design decisions, extensions,
and configurations that we chose in order to do so, and eval-
uates them within a framework that seeks to establish how
they influenced the set of supported experiments and how they
influenced the community of users the testbed was able to
support. Our contribution is accompanied by software that
was contributed or integrated with a mainstream open-source
cloud implementation (OpenStack) so that a cloud of this type
– or its evolutions or variations – can be supported by anyone.

The most important part of our experience is the insight

that though originally created to support the most experiments
for the most experimenters, testbeds have also become both a
generator and an essential platform for sharing digital repre-
sentations of experiments. While our understanding of digital
sharing ecosystem still evolves, and is likely to evolve for
some time, we proposed some approaches that our user com-
munity has found useful and we look forward to contributing
to this area in the future.
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Availability

Traces from Chameleon CHI and KVM have been publically
available at [64, 65] for the last couple of years and used in a
variety of resource management publications. Not all the data
used in this paper is reflected in those traces though we are
currently discussing revisions to both the content and format.
All the code described here is open source.
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