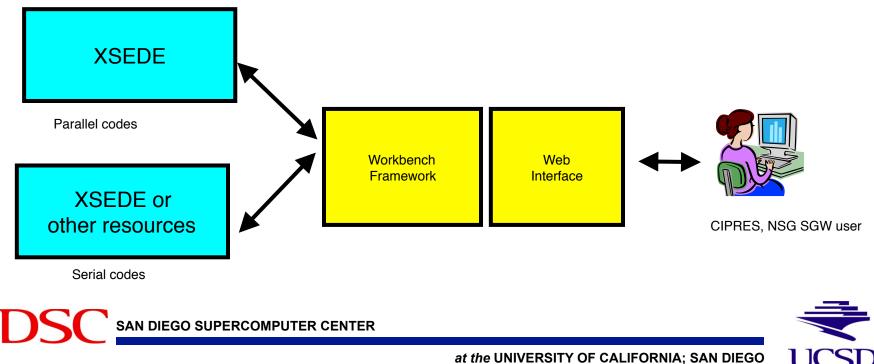
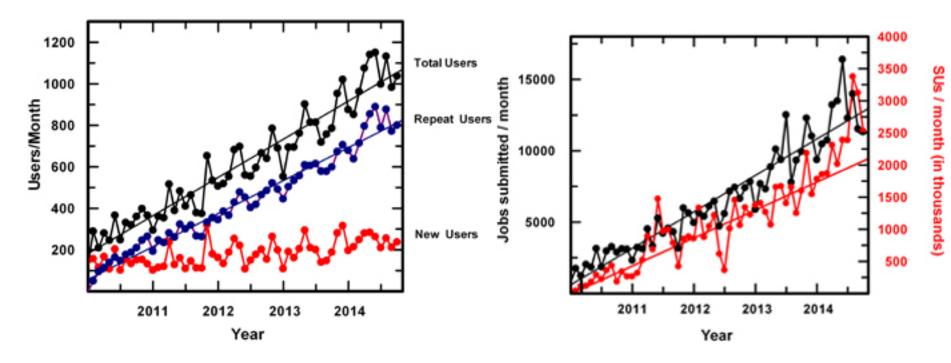
Exploring Science Gateway Use Cases for Cloud Computing

M. A. Miller, P. Papadopoulos, A. Majumdar, S. Smallen, N. Wilkins-Diehr, R. P. Wagner, M. Tatineni, R. S. Sinkovits, R. L. Moore, M. L. Norman

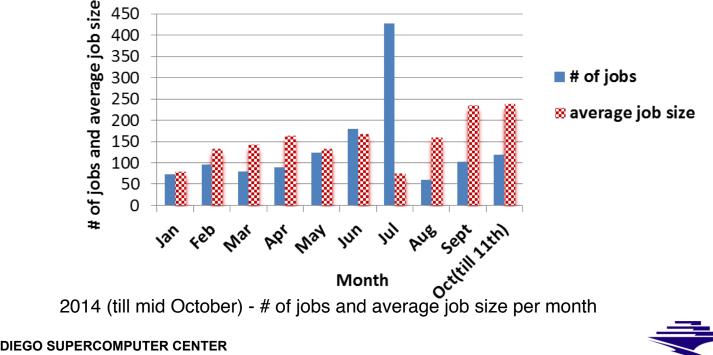

> San Diego Supercomputer Center University of California San Diego


Science Gateways – CIPRES, NSG

- Science Gateways provide easy and free access to HPC resources
- CIPRES: Science Gateway for phylogenetics research
- NSG: Science Gateway for computational neuroscience
- There are many other successful XSEDE Science Gateways (https://portal.xsede.org/science-gateways)

NSF Funded CIPRES – Continually Growing

- CIPRES accounts for more than 30% of all XSEDE users
- More than 1300 publications enabled since 2009
- Staff size is less than 2 FTE



Usage 12/1/2009 - 10/1/2014

Neuroscience Gateway (NSG) – a NSF funded Science Gateway

- Went into friendly production phase in 2013
- In 2014 ~2M SUs used by neuroscience users; ~200 users
- Provides parallel spiking neuronal simulation codes truly parallel simulation as well as parameter sweep type simulations

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

NSF HPC Resources

- NSF has made a significant investment in HPC resources with ~10s to 100s of thousands of cores, fast interconnects, parallel file systems etc.
 - Designed for codes that scales to many 1000s of cores
- This has accelerated the rate of scientific discovery in bio science (and other science domains)
- CIPRES codes run on these high end resources
 - Codes supported by CIPRES scale to no more than 64 cores
 - Significant fraction of CIPRES codes run on only 8 cores
- Neuronal simulations codes scale to ~100s to ~1000s of cores
 - But there are many parameter sweep type simulations using ~10s to ~100s of cores

Cloud Resources for Science Gateways ?

- What mix of high end HPC resources and Cloud resources are appropriate for SGW ?
- Provide the science impact needed by SGW while utilizing resources appropriately
- Oversubscription of XSEDE resources is an issue
 - Oversubscription threatens CIPRES operation
 - NSG ran out of allocated SUs in both 2013 and 2014 (and needed supplemental allocation)

SGW Usage Policies

- For fully allocated (and oversubscribed) resources (e.g. from XSEDE) limits are in place (within CIPRES, NSG) for max usage allowed by each SGW user
- Some populations of users do not use SGW as their computational needs are greater than what SGW provides
 - What is the size of this population ?
 - How are they meeting their needs ?
 - Can a fee-for service be provided for them ?
- Can a cloud provider offer lower cost solution on appropriate compute resources ?
 - Users can pay for service beyond the limit of free service
 - Thus avoid the limits in place for free resources

Cloud Experiments for SGW

- Establish minimum requirement of SGWs CIPRES, NSG, others
- How do these requirements match with available provisioning options from cloud computing ?
- Benchmark codes on appropriate cloud resources
 - Network access
 - File systems
 - Data transfer
 - Code performance
 - Create distributable VM images
 - Any other GUI, workflow requirements etc.

Advantages of Clouds

- High end resources can be freed up for scalable codes
- Low scalability codes can move to less costly resources
- Portable work environment can be moved to commercial cloud
- Users can use home environment for low end runs and commercial resources for high end runs

Risks

- Poor scalability, performance of codes
- Poor file system, negative network impact, worse data management, portability issues
- The gain in throughput may not be worth the increased complexity
- Will savings in H/W equipment be offset by cost of software

