CHAMELEON:
A NEW ECOSYSTEM FOR
EXPERIMENTAL COMPUTER SCIENCE

Kate Keahey
Mathematics and CS Division, Argonne National Laboratory CASE, University of Chicago
keahey@anl.gov

November 8, 2018
Boston University seminar
CHAMELEON IN A NUTSHELL

► **Deeply reconfigurable:** “As close as possible to having it in your lab”
 ► Deep reconfigurability (bare metal) and isolation
 ► Power on/off, reboot from custom kernel, serial console access, etc.
 ► But also – modest KVM cloud for ease of use

► **Combining large-scale and diversity:** “Big Data, Big Compute research”
 ► **Large-scale:** ~660 nodes (~15,000 cores), 5 PB of storage distributed over 2 sites connected with 100G network...
 ► ...and **diverse:** ARMs, Atoms, FPGAs, GPUs, Corsa switches, etc.
 ► **Coming soon:** more storage, more accelerators

► Blueprint for a **sustainable** production testbed: “cost-effective to deploy, operate, and enhance”
 ► Powered by OpenStack with bare metal reconfiguration (Ironic)
 ► Chameleon team contribution recognized as official OpenStack component

► **Open, collaborative, production** testbed for **Computer Science Research**
 ► Started in 10/2014, testbed available since 07/2015, renewed in 10/2017
 ► Currently 2,700+ users, 450+ projects, 100+ institutions
CHAMELEON HARDWARE (DETAILS)

▶ “Start with large-scale homogenous partition”
▶ 12 Haswell Standard Cloud Units (48 node racks), each with 42 Dell R630 compute servers with dual-socket Intel Haswell processors (24 cores) and 128GB RAM and 4 Dell FX2 storage servers with 16 2TB drives each; Force10 s6000 OpenFlow-enabled switches 10Gb to hosts, 40Gb uplinks to Chameleon core network
▶ 2 SkyLake Standard Cloud Units (32 node racks); Corsa (DP2400 & DP2200) switches, 100Gb uplinks to Chameleon core network
▶ Allocations can be an entire rack, multiple racks, nodes within a single rack or across racks (e.g., storage servers across racks forming a Hadoop cluster)

▶ Shared infrastructure
▶ 3.6 + 0.5 PB global storage, 100Gb Internet connection between sites
▶ “Graft on heterogeneous features”
▶ Infiniband with SR-IOV support, High-mem, NVMe, SSDs, GPUs (22 nodes), FPGAs (4 nodes)
▶ ARM microservers (24) and Atom microservers (8), low-power Xeons (8)
▶ Coming soon: more nodes (CascadeLake), and more accelerators
REQUIREMENTS FOR EXPERIMENTAL WORKFLOW

- **discover** resources
- **allocate** resources
- **configure and interact**
- **monitor**

- Fine-grained
- Complete
- Up-to-date
- Versioned
- Verifiable

- Advance reservations & on-demand
- Isolation
- Different resource types

- Deeply reconfigurable
- Appliance catalog
- Snapshotting
- Complex Appliances
- Network Isolation

- Hardware metrics
- Fine-grained information
- Aggregate and archive
BUILDING CHI (CHAMELEON INFRASTRUCTURE)

- Requirements for core functionality (proposal stage)
 - Interviews with ~20 research groups
- Architecture: **discover, provision, configure**, and **monitor**
- Technology Evaluation and Risk Analysis
 - Many options: Grid’5000, Nimbus, LosF, OpenStack
 - Final round: Grid’5000 and OpenStack
- Criteria: sustainability as design criterion
 - **Does it fit our purpose?** Feature coverage, incl. ease of use
 - **Can we customize it?** Open-source, configurable, extendable
 - **Can we rely on it?** Stable, scalable, supported
 - Can a CS testbed be built from commodity components?
- A mix of technologies with lots of tweaks (aka “special sauce”)
 - Grid’5000 for resource discovery and hardware verification
 - OpenStack for the rest (using Blazar, Ironic, and core OpenStack services)
- Core functionality built in just 3 months after evaluation
WHAT IS OPENSTACK?

- Leading open-source IaaS implementation... and more

Traditional software

OpenStack

- Community: ~1,500-2,000 developers contributing to each release including many big companies contributing, e.g. Huawei, Red Hat
- Deployment base:
 - 2017 user surveys logged 1,000 unique deployments (~millions of end users)
 - 60 public cloud data centers, from e.g. Rackspace, OVH
 - Large-scale deployments, e.g. ~100sK cores at CERN
THE MISSING COMPONENT: OPENSTACK BLAZAR

- **Advanced reservation service** for OpenStack
- Originally developed 2013-2014 in the context of power management research
- From early 2015: adaptation for Chameleon
 - Improve stability, integration with Ironic
 - Dashboard improvements (Gantt chart)
 - Incremental operational improvements
- Fall 2016: revival
 - Joined forces with NTT and others working on capacity reservation for NFV
- **Official OpenStack project** in Sep 2017
OPENSTACK: LESSONS LEARNED

- The good
 - Large community rapidly developing new features
 - Common requirements → shared effort
 - Commodity infrastructure for sustained use
 - Many users already familiar with OpenStack

- The bad
 - Large community rapidly developing new features
 - Complexity: need to understand core components
 - Some users assume Chameleon is like any OpenStack
SUPPORT FOR EXPERIMENTAL WORKFLOW

discover resources → allocate resources → configure and interact → monitor

Grid’5000 Resource Discovery

OpenStack:
- Nova
- Blazar
- Swift

OpenStack:
- Ironic
- Neutron
- Glance
- Heat
Other
- Appliances++
- Snapshotting
Network Isolation

OpenStack
- Gnocchi Agents, custom integration, etc.

CHI = 65%*OpenStack + 10%*G5K + 25%*”special sauce”
SPECIAL SAUCE, LATELY...

Networking:

- **Multi-tenant networking** allows users to provision isolated L2 VLANs and manage their own IP address space (since Fall 2017)

- **Stitching** dynamic VLANs from Chameleon to external partners (ExoGENI, ScienceDMZs) (since Fall 2017)

- VLANs + AL2S connection between UC and TACC for **100G experiments** (since Spring 2018)

- **BYOC—Bring Your Own Controller**: isolated user controlled virtual OpenFlow switches (Summer 2018)

- New lease management features, multi-region configuration, power consumption metrics, whole disk image boot for ARM nodes, serial console access, etc.

- And many more...
 - Appliances, usability improvements, upgrades, etc.
VIRTUALIZATION OR CONTAINERIZATION?

- Yuyu Zhou, University of Pittsburgh
- Research: lightweight virtualization
- Testbed requirements:
 - Bare metal reconfiguration, isolation, and serial console access
 - The ability to “save your work”
 - Support for large scale experiments
 - Up-to-date hardware

SC15 Poster: “Comparison of Virtualization and Containerization Techniques for HPC”
EXASCALE OPERATING SYSTEMS

- Swann Perarnau, ANL
- Research: exascale operating systems
- Testbed requirements:
 - Bare metal reconfiguration
 - Boot from custom kernel with different kernel parameters
 - Fast reconfiguration, many different images, kernels, params
 - Hardware: accurate information and control over changes, performance counters, many cores
 - Access to same infrastructure for multiple collaborators

HPPAC'16 paper: “Systemwide Power Management with Argo”
CLASSIFYING CYBERSECURITY ATTACKS

- Jessie Walker & team, University of Arkansas at Pine Bluff (UAPB)
- Research: modeling and visualizing multi-stage intrusion attacks (MAS)
- Testbed requirements:
 - Easy to use OpenStack installation
 - A selection of pre-configured images
 - Access to the same infrastructure for multiple collaborators
CREATING DYNAMIC SUPERFACILITIES

- NSF CICI SAFE, Paul Ruth, RENCI-UNC Chapel Hill
- Creating trusted facilities
 - Automating trusted facility creation
 - Virtual Software Defined Exchange (SDX)
 - Secure Authorization for Federated Environments (SAFE)
- Testbed requirements
 - Creation of dynamic VLANs and wide-area circuits
 - Support for slices and network stitching
 - Managing complex deployments
DATA SCIENCE RESEARCH

- ACM Student Research Competition semi-finalists:
 - Blue Keleher, University of Maryland
 - Emily Herron, Mercer University

- Searching and image extraction in research repositories

- Testbed requirements:
 - Access to distributed storage in various configurations
 - State of the art GPUs
 - Easy to use appliances and complex deployments
Divyashri Bhat, UMass Amherst

Research: application header based traffic engineering

Testbed requirements:
- Distributed testbed facility
- BYOC – the ability to write an SDN controller specific to the experiment
- Multiple connections between distributed sites
BUILDING AN ECOSYSTEM

- Helping hardware providers interact
 - Bring Your Own Hardware (BYOH)
 - CHI-in-a-Box: deploy your own Chameleon
- Helping scientists interact
 - Leveraging the common denominator
 - Integrating tools for experiment management
 - Making reproducibility easier
 - Facilitating sharing
CHI-IN-A-BOX

- CHI-in-a-box: packaging a commodity-based testbed
- CHI-in-a-box scenarios
 - **Testbed extension**: join the Chameleon testbed: generalize and package + define operations models
 - **Part-time extension**: define and implement contribution models
 - **New testbed**: generalize policies
- Available since Summer 2018
- New Associate Site at Northwestern
 - Nodes with 100G network cards
REPRODUCIBILITY DILEMMA

Should I invest in making my experiments repeatable? Should I invest in more new research instead?

- Reproducibility as side-effect: lowering the cost of repeatable research
 - Example: Linux “history” command
 - From a meandering scientific process to a recipe
- Documenting the process: interactive papers
REPEATABILITY MECHANISMS IN CHAMELEON

- Testbed versioning (collaboration with Grid’5000)
 - Based on representations and tools developed by G5K
 - >50 versions since public availability – and counting
 - Still working on: better firmware version management

- Appliance management
 - Configuration, versioning, publication
 - Appliance meta-data via the appliance catalog
 - Orchestration via OpenStack Heat

- Monitoring and logging

However... the user still has to keep track of this information
KEEPPING TRACK OF EXPERIMENTS

- Everything in a testbed is a recorded event
 - The resources you used
 - The appliance/image you deployed
 - The monitoring information your experiment generated
 - Plus any information you choose to share with us: e.g., “start power_exp_23” and “stop power_exp_23”

- **Experiment précis**: information about your experiment made available in a “consumable” form
REPEATABILITY: EXPERIMENT PRÉCIS

- OpenStack services
- Instance monitoring
- Infrastructure monitoring
- User events

Experiment précis

Store and share

Orchestrator (Heat)
EXPERIMENT PRÉCIS IMPLEMENTATION

User

Experiment
1. Create a lease
2. Launch instances
3. Add networks
4.

RabbitMQ

Testbed

Experiment Precis
1. lease_start
2. Instance_start
3.

Listener

Chameleon Commandline

English Description

Experiment Precis Formatter

Events

SC18 poster: “Reproducibility as Side-Effect”
EXPERIMENT PRÉCIS: A CASE STUDY

Based on Wang et al., Understanding and Auto-Adjusting Performance-Sensitive Configurations. ASPLOS, 2018
REPEATABILITY: EXPERIMENT PRÉCIS

- OpenStack services
- Instance monitoring
- Infrastructure monitoring
- User events

Experiment précis

?
WHAT DOES IT MEAN TO DOCUMENT A PROCESS?

- **Requirements**
 - Human readable/modifiable format
 - Integrates well with ALL aspects of experiment management
 - Bit by bit replay – allows for bit by bit modification (and introspection) as well – element of interactivity
 - Support story telling: allows you to explain your experiment design and methodology choices
 - Has a direct relationship to the actual paper that gets written
 - Can be version controlled and easily shared
 - Sustainable, a popular open source choice

- **Implementation options**
 - Orchestrators: Heat, the dashboard, and Flame
 - Notebooks: Jupyter, Nextjournal
JUPYTER ON CHAMELEON

Run experiment and get output

Log in to Jupyter Notebook server
Generate output suitable for publishing

\[\text{LATEX} \]
JUPYTER ON CHAMELEON

username

Re-run experiment with modifications

Log in to Jupyter Notebook server

Compare results

What if...
CHAMELEON JUPYTER INTEGRATION

- Storytelling with Jupyter
 - text, process, results
- Jupyter as an interface to Chameleon
 - All the main testbed functions
 - Jupyter.chameleoncloud.org
 - “Hello World” template
 - Save and share via our object store
- Create and modify your experiment bit by bit
- Screencast of a complex experiment
 - https://vimeo.com/297210055
HOW DO I GET STARTED?

» Go to www.chameleoncloud.org
» Click the big orange Get started button
 » Create account
 » Create or join a project/allocation (10,000 SUs)
 » Follow the documentation to start a lease
» Keep in touch and let us know how we can help!
PARTING THOUGHTS

- Chameleon: rapidly evolving testbed
 - Changes as the research frontier changes

- Testbeds are not just experimentation platforms
 - Ecosystem: a meeting place of users sharing resources and research
 - Common/shared platform is a “common denominator” that can eliminate much complexity that goes into sharing and reproducibility: it allows you to do something interesting and powerful and then share it

- Get engaged – come to the User Meeting!
 - https://www.chameleontcloud.org/user-meeting-2019/
Questions?

www.chameleoncloud.org
keahey@anl.gov