
Scheduling Data-intensive Many-task Computing
Applications in the Cloud

Ke Wang
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

kwang22@hawk.iit.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT

Scientific applications are ushering in the era of big data that has

expedited the evolution of paradigm shifting from compute-

centric model to data driven one. The Many-task computing

(MTC) paradigm comes from a data driven model and aims to

address the challenges of scheduling data-intensive workloads

through over-decomposition. MATRIX is a distributed scheduler

for fine-grained data-intensive MTC applications. We have

evaluated MATRIX on the BG/P machine up to 4K cores, and on

the Kodiak cluster up to 200 cores. We propose to integrate the

Swift workflow engine with MATRIX to enable MATRIX

running many more scientific applications in the Cloud. We also

plan to replace the centralized schedulers of the Hadoop clusters,

such as YARN and Mesos, by MATRIX to support MATRIX

running the data-intensive applications in the data centers and

Cloud domains. We believe that the two recently funded Cloud

testbeds, namely the Chameleon and CloudLab, would offer great

platforms for our experiments.

1. INTRODUCTION
Large-scale scientific applications are ushering in the era of big

data such that task execution involves consuming and producing

large volumes of input and output data with data dependencies

among tasks. These applications are referred to data-intensive

applications that cover a wide range of disciplines, including

astronomy, astrophysics, bioinformatics, data analytics, data

mining, and MPI ensembles [1]. The big data phenomenon [2] has

expedited the evolution of paradigm shifting from compute-

centric model to data driven one [3].

As systems are growing exponentially in parallelism approaching

billion-way concurrency at exascale [4], we argue that the data

driven programming models will likely employ over-

decomposition that would generate even many more fined-grained

tasks than available parallelism. While over-decomposition has

been shown to improve utilization at extreme scales as well to

make fault tolerance more efficient [5], it poses significant

challenges on scheduling system to make fast scheduling

decisions (e.g. millions/sec), in order to achieve the highest

throughput and utilization. This requirement is far beyond the

capability of today’s centralized scheduling systems.

The Many-task computing (MTC) [6] paradigm comes from the

data driven model, and aims to define and address the challenges

of scheduling fine-grained data-intensive workloads. MTC applies

over-decomposition to structure applications as Direct Acyclic

Graphs (DAG), in which the vertices are small discrete tasks and

the directed edges represent the data flows from one task to

another. The tasks have fine granularity in both size (e.g. per-

core) and durations (e.g. sub-seconds to a few seconds), and do

not require strict coordination of processes at job launch as the

traditional HPC workloads.

We justify that the task scheduling system for MTC will need to

be fully distributed to achieve high scalability, efficiency, and

availability. The architecture is shown in Figure 1.

KVS server

Scheduler

Executor KVS server

Scheduler

Executor

Compute Node Compute Node

……

Fully-Connected

communication

Client Client Client

Figure 1: Fully-distributed scheduling architecture

Each compute node would run one scheduler and one or more

executors/workers. As a compute node would have thousands of

cores at exascale [4], and given the fact that the MTC data-

intensive workloads have extremely large amount of fine-grained

jobs/tasks with each task requiring one core for a short amount of

time (e.g. millisecond), there would need a dedicated scheduler on

one “fat” compute node forming 1:1 mapping. All the schedulers

are fully connected, and receive workloads to schedule tasks to

local executors. Therefore, ideally, the throughput would gain

near-optimal linear speedup as the system scales. More

importantly, the failures would only affect the tasks that are run

on the failed compute nodes.

2. MATRIX Scheduling System
MATRIX [9] is a fully distributed task scheduling system for fine-

grained data-intensive MTC applications with the architecture

shown in Figure 1. MATRIX applies work stealing to achieve

distributed load balancing, and supports the data-aware work

stealing with the help of four distributed local queues (task

waiting queue, task ready queue, task running queue, and task

completion queue) and the ZHT distributed key-value stores

(KVS) [7][8]. ZHT stores the task metadata including task

dependency information, data flow information, data-locality

information, and task execution progress in a transparent and

scalable way.

MATRIX is developed in C++. MATRIX has about 3K lines of

codes, with 8K lines of ZHT codebase. We have evaluated

MATRIX using micro-benchmarks on an IBM Blue Gene/P

supercomputer up to 4K-core scale. MATRIX maintains

throughput as high as 13K tasks/sec, and 85%+ efficiency with

fine-grained sub-second tasks (64ms) [9]. We also applied

MATRIX to schedule two data-intensive applications, namely the

image stacking application from Astronomy and the all-pairs

applications from Bio-informatics up to 200 cores [10].

3. Proposed Work
We propose to integrate the Swift workflow engine with

MATRIX to enable MATRIX running many more scientific

applications in Cloud. We also plan to replace the centralized

schedulers of the Hadoop clusters, such as YARN and Mesos, by

MATRIX to support MATRIX running the data-intensive

applications in the data centers and Cloud domains.

3.1 Swift Integration with MATRIX
The plan to enable MATRIX to run large-scale MTC applications

in Cloud is to integrate with Swift [12]. Swift is a parallel

programming system and workflow engine for MTC applications

that cover a variety of disciplines, ranging from Biology, Earth

Systems, Physical Chemistry, Astronomy, to Neuroscience,

Economics, and Social Learning and so on. Swift will serve as the

high-level data-flow parallel programming language between the

applications and MATRIX. Swift would essentially output many

parallel and/or loosely coupled distributed jobs/tasks with the

necessary task dependency information, and submit them to

MATRIX. Instead of having Swift manage the DAG, the DAG

would be managed in a distributed way by MATRIX through the

ZHT distributed KVS. Swift has been scaled to distribute up to

612 million dynamically load balanced tasks per second at scales

of up to 262,144 cores [12]. This extreme scalability would

absolutely advance the progress of enabling MATRIX supporting

large-scale scientific applications at extreme-scales.

3.2 MATRIX in Data Centers and Clouds
Another direction is to push MATRIX in the data center and

Cloud environment to run the data-intensive workloads from the

Internet domain. The current MapReduce framework has a

centralized task dispatcher to dispatch the data-intensive

workloads to mappers that have data for specific tasks. We will

extend MATRIX to support the MapReduce framework to enable

distributed scheduling for the MapReduce data-intensive

workloads. We will utilize distributed file systems, such as

FusionFS [11], to help MATRIX implement data locality and the

data-aware scheduling with the help of ZHT KVS. MATRIX +

FusionFS will be the combination of distributed version of

MapReduce framework, as opposed to the current centralized

YARN + HDFS or the Mesos + Hive combinations. We will also

compare MATRIX with YARN [13] and Mesos [14] schedulers.

4. Expected Experiments and Platforms
For Swift integration, the expected experiments are decomposing

data-intensive applications from Biology, Earth Systems, Physical

Chemistry, Astronomy, Neuroscience, Economics, and Social

Learning as different DAGs. Then, MATRIX would be deployed

in the Cloud environment to run all these applications at large

scales. We also plan to extend our work through simulations to

study the scalability of MATRIX up to exascale levels with

millions of nodes. These experiments aim to explore the

performance gains of scheduling large-scale scientific applications

in the Cloud platforms through the MTC over-decomposition

principle and the data-aware work stealing technique.

For applying MATRIX to run data-intensive applications in the

data centers and cloud environments, we expect to deploy

MATRIX on the Cloud platforms to run typical Hadoop

applications, such as Word Count, Sort, Grep, Inverted Index, at

the first stage. Then we will try to compare MATRIX with the

YARN and Mesos schedulers by running the data-intensive

applications that were run by YARN (the Yahoo! data-intensive

workloads) and by Mesos (the Facebook data-intensive

workloads), respectively. We expect that MATRIX will be more

scalable and have the ability to make much faster scheduling

decisions for these data-intensive workloads due to the distributed

data-aware scheduling architecture and technique.

All these experiments are expected to be up to the scales of

thousands of cores. The newly funded Cloud testbeds are perfect

platforms for our expected experiments, because they are

designed to run loosely coupled data-intensive applications.

What’s more, there shouldn’t be problems of deploying and

running MATRIX in both platforms, as MATRIX is developed in

C++, which has great supports in different Linux distributions.

5. REFERENCES
[1] I. Raicu, et al. “Many-Task Computing for Grids and

Supercomputers”, Invited Paper, IEEE MTAGS 2008.

[2] Boyd, Danah and Kate Crawford. “Critical Questions for Big

Data: Provocations for a Cultural, Technological, and

Scholarly Phenomenon.” Information, Communication, &

Society 15:5, p. 662-679, 2012.

[3] Willcock, J., Hoefler, T., et al. “Active Pebbles: Parallel

Programming for Data-Driven Applications.” In: Proc. of

ACM ICS 2011.

[4] V. Sarkar, et al. “ExaScale Software Study: Software

Challenges in Extreme Scale Systems”, ExaScale Computing

Study, DARPA IPTO, 2009.

[5] X. Besseron and T. Gautier. “Impact of Over-Decomposition

on Coordinated Checkpoint/Rollback Protocol”, Euro-Par

2011: Parallel Processing Workshops, Lecture Notes in

Computer Science Volume 7156, 2012, pp 322-332.

[6] I. Raicu. “Many-Task Computing: Bridging the Gap between

High Throughput Computing and High Performance

Computing”, ISBN: 978-3-639-15614-0, VDM Verlag Dr.

Muller Publisher, 2009.

[7] T. Li, et al. “ZHT: A Light-weight Reliable Persistent

Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE

IPDPS 2013.

[8] K. Wang, et al. “Using Simulation to Explore Distributed

Key-Value Stores for Extreme-Scale Systems Services,”

IEEE/ACM Supercomputing/SC 2013.

[9] K. Wang, et al. “Paving the Road to Exascale with Many-

Task Computing”, Doctoral Showcase, IEEE/ACM

Supercomputing/SC 2012.

[10] K. Wang, et al. “Optimizing Load Balancing and Data-

Locality with Data-aware Scheduling”, IEEE BigData, 2014.

[11] D. Zhao, et al. “FusionFS: Towards Supporting Data-

Intensive Scientific Applications on Extreme-Scale High-

Performance Computing Systems”, IEEE BigData, 2014.

[12] T. Armstrong, et al. “Compiler techniques for massively

scalable implicit task parallelism”, IEEE/ACM SC 2014.

[13] V. Vavilapalli, et al. “Apache Hadoop YARN: yet another

resource negotiator”, SOCC '13.

[14] B. Hindman, et al. “Mesos: a platform for fine-grained

resource sharing in the data center”, NSDI'11.

