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Summary 

In current work1, we are exploring how to adapt and design advanced operating systems to maximize performance in 

power scalable environments. For example, we have observed significant performance slowdowns when CPU power scaling 

is combined with parallel applications that frequently access I/O. Since power scaling will be essential to future cloud 

systems to balance infrastructure restrictions on power with performance needs, we must identify the root causes of these 

types of slowdowns. Our preliminary work shows that identifying root causes requires a combination of exhaustive 

experimentation with deep knowledge of (and access to) the underlying hardware and software. While our current work has 

been limited to bare-metal Linux platforms, we have determined slowdowns are highly sensitive to increases in system 

scalability and variability. Thus, we require experimental platforms of scale that enable: 1) exploration of slowdowns with 

and without virtualization; 2) exploration of slowdowns in the context of software and hardware heterogeneity; 3) the ability 

to install and analyze experimental operating and runtime systems; and 4) the ability to measure power consumption and 

performance. Should the Chameleon and CloudLab platforms provide these capabilities, we plan to make use of them to 

create new systems that Limit Unintended Consequences (LUC) and maximize performance in power scalable 

environments. 

Preliminary Work 

Future cloud systems will be enormous, complex and 

heterogeneous. It is widely acknowledged that designing efficient 

systems at scale is a grand challenge for the community [1]. To 

address inefficiencies, the components of these complex systems 

perform a growing set of tasks themselves. For example, 

processors [5], memory [3], and disks [6, 7] are capable of 

independently managing their power consumption. Such devices 

attempt to balance user performance demands with the energy 

constraints of the physical infrastructure.  

The combination of device independence with unprecedented 

degrees of parallelism in software and hardware at system scale 

leads to ever more complex interactions among operating systems, 

virtualization, parallel and distributed applications and services, 

and hardware. Thus, identifying the optimal performance 

configuration of applications and services on clouds at runtime is 

exceedingly difficult because the variance among data points may 

exceed the best average performance operating point. 

Figure 1 provides an example of this phenomenon. The figure 

plots the performance for 64 threads of a parallel transaction 

workload at various power/frequency settings from 1.6 GHz to 3.1 

GHz. Performance is the ratio of speedup versus the slowest 

frequency and the performance gets worse with higher 

frequencies. This slowdown is difficult to observe in practice 

because the standard deviation (shown as the gray/blue area 

surrounding the line plot) often exceeds the performance 

difference between two data points. 

For example, Figure 1 shows the 2.0 GHz frequency has a standard deviation of 12% while 1.7GHz on average performs 

10% better. Thus, taking a single measured sample at the low performance range of 1.7 GHz and a single sample at the high 

performance range of 2.0 GHz results in the flawed conclusion that 2.0 GHz should be selected for better performance. 

Therefore, a runtime system attempting to adapt processor power/frequency settings [4] and optimize based on sampled 

runtime performance information could be ineffective and result in significant performance loss. 
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Figure 1 Filebench varmail speedup ratios normalized to the lowest 

available CPU frequency (1.6 GHz) – higher is better. The grey/blue 

area shows one standard deviation from the mean. Nehalem (HDD) 
System:  Dell T3500 using a W3550 3.00 GHz quad-core with 6 GB of 

DDR3 RAM and a 250 GB 7200 rpm hard drive. 

 
 

 
Figure 2 Filebench varmail speedup ratios normalized to the lowest 
available CPU frequency (1.6 GHz) – higher is better. Each line shows 

speedup for (number of threads) x (number of files). For 64 threads, 

performance drops significantly at higher frequencies. 
 



Additionally, the same code may perform differently at scale. Figure 2 shows the same example from our transaction 

workload for varying the number of threads from 4 to 64. The slowdown at higher frequencies does not occur until 64 

threads where variance between runs increases. Beyond 64 up to 256 threads (not shown) the performance is similar to the 

432 thread cases. 

Figures 1 and 2 show the assumption that increasing power/frequency improves (or at least doesn’t hurt) performance is 

flawed. Without a deeper understanding of the causes of these types of slowdowns and isolation of the root causes, runtime 

systems cannot avoid these types of slowdowns altogether. A runtime system using sampling to schedule threads runs the 

additional risk of falling victim to the previously discussed variance issue. 

Unfortunately, at the same time complexity threatens system efficiency, performance has never been more critical to the 

worldwide economy. According to Amazon’s Greg Linden and Google’s Marissa Meyer2: “Amazon found every 100ms of 

latency cost them 1% in sales. Google found an extra .5 seconds in search page generation time dropped traffic by 20%.” 

High frequency trading also relies on data centers where power management is considered critical yet a few milliseconds 

of latency loss can result in millions of lost profits3. 

To address the Unintended Consequences that are increasing in frequency with the growth in system complexity, we are 

building runtime systems that identify the causes of performance loss in power scalable systems. For the slowdowns we’ve 

isolated so far, causes include 1) additional false sharing in the OS that occurs when processor performance/power is 

increased; and 2) scenarios where asynchronous I/O is not enabled and hurts performance significantly. Our work [2] shows 

that our optimized designs that address these two causes result in performance gains from 10-60% depending on I/O 

workload and system characteristics. For future work, we have also identified a number of other slowdown scenarios that 

have as yet undetermined root causes. 

Our Experimental Cloud Needs 

The exhaustive testing necessary for 95% confidence in the results shown in Figures 1 and 2 requires thousands of 

experiments and takes weeks on our 12-16 node cluster. This is primarily due to the high variance in the measurements that 

increase with scalability, complexity, and heterogeneity. This requires 40-50 runs per data point for the desired confidence. 

Currently, we have limited testing primarily to the Linux ext3 and ext4 filesystems since this reduces the problem space. 

We have also completely ignored the effects of virtualization since 1) the additional abstraction obfuscates isolating 

performance slowdowns; and 2) the additional software increases the problem space significantly. Currently experiments 

varying scale and heterogeneity are limited to our testbed, but our results (See Figures 1 and 2) indicate sensitivity to these 

parameters that must be explored further. We need access to environments (e.g. Chameleon and CloudLab) that allow us to 

migrate our studies and solutions from bare-metal OS’s to virtualized systems. This will enable us to continue to improve 

the efficiency of future highly scalable and heterogeneous cloud systems and services. 
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