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1. INTRODUCTION
More and more applications in Cloud fall into the incremen-
tal computing category where we need to process continuous
incoming new data as well as existing historical data, and
provide analytics over the entire dataset in a short time.
Different from traditional streaming processing [10], the in-
cremental applications usually contain some internal states
that will change incrementally while processing new data.
These changes can be as simple as manipulating numerical
counters, or as complex as multi-stage computations includ-
ing several iterations. For example, to monitor the popular
#topics in Twitter, we need to hold an internal state record-
ing the tweets counter of each #topics, and then simply in-
crease the counters based on new tweets. A more complex
example would be the PageRank algorithm for calculating
the importance (page rank value) of each web page in the
Internet [13]. In PageRank, the internal state contains the
page rank value of each web page, and needs to change each
time when a new web page is processed. However, unlike the
Twitter example, each new web page will not directly change
its own page rank value. It will affect all the neighbors first,
then spread the changes in multiple iterations across the
overall state, and finally converge to a stable value.

Implementing these incremental applications in a scalable
way is a big challenge in current Cloud computing environ-
ment. This challenge contains several aspects. First, at
the application level, choosing the right algorithm is com-
plicated. Many algorithms usually have both batch ver-
sions and incremental or streaming versions, like, PageRank
has a Monte-Carlo based method for streaming datasets,
which is totally different from the original algorithm [9]. Al-
though these different algorithms may be all correct, their
efficiency and performance usually are highly dependent on
the problem scenarios and execution environments. In Cloud
environment, this requires a flexible but standard environ-
ment to test the correctness and evaluate the performance
advantages or disadvantages. Second, at the framework
level, supporting such large-scale incremental applications

is difficult. Although there are many streaming or incre-
mental frameworks existing like S4, Storm, Percolator, Oo-
long, Domino, Spark-Streaming and many MapReduce ex-
tensions [12, 2, 14, 11, 7, 16, 3, 8, 17, 15], none of them
has dominated others to be a standard way of writing incre-
mental applications due to their own limitations in different
aspects. It would be both interesting and useful to have a
flexible but standard environment to test and evaluate these
frameworks for different applications. The results not only
help developers choose the right solution, but also possibly
lead to a better framework or new optimizations for existing
frameworks.

2. EXPERIMENTS
First, a broad category of applications are chosen for our
evaluations. We consider simple incremental applications
like topic trend or keyword monitoring in social network, but
more importantly, we will go through the popular machine
learning algorithms including linear regression, decision tree,
k-means, PageRank, collaborative filter, support vector ma-
chine, and neuron networks, etc., to check the right strategy
to implement them.

Second, for each of these algorithms, three different scenar-
ios are proposed to evaluate the performance: the batch-
ing algorithms on static datasets; the batching algorithms
on streaming datasets; and the incremental algorithms on
streaming dataset. To show the performance of batch algo-
rithms on static datasets, we will test the popular MapRe-
duce [6] version of these machine learning algorithms based
on the open-source implementation from Mahout [1]. How-
ever, for other two cases (batching and incremental algo-
rithms on the streaming dataset), the evaluation would be
more complex due to more choices are provided. There are
MapReduce extensions for incrementally processing[3, 8, 17,
15] that we can use to implement different algorithms, and
also incremental or streaming frameworks we can use [12, 2,
14, 11, 7, 16]. Among all these choices, most of the MapRe-
duce extensions are research projects lacking of enough func-
tionalities and optimizations. To ease our efforts, we plan
to only select one of them (Twister [8]) as the state of art
solution for further comparison. On the other hand. Many
incremental or streaming frameworks are mature and ready
to use, like S4, Storm, or Spark-Streaming. We will evaluate
all the accessible frameworks in our tests. In addition to use
these existing incremental frameworks, we also plan to write
the MPI implementations as the base-line performance.



As we have described, for the framework evaluation, we
only deploy accessible mature open-source frameworks (i.e.,
Twister, S4, Storm, Spark-Streaming) and our own frame-
work called Domino [7] into different standardized Cloud en-
vironments built from the Chameleon [4] and CloudLab [5].
To test the scalability, we need to deploy them in different
sizes.

Note that although there are already many comparisons
among different incremental frameworks, researchers and de-
velopers from different communities usually disagree with
each other about these results. In most cases, these disagree-
ments come from misconfiguration or non-optimal deploy-
ment of specific frameworks. In our experiments, we plan to
work with different communities closely to ensure we carry
out the nearly optimal deployment for these frameworks.

The most critical performance measurement of incremental
applications is how fast they can absorb the incremental in-
puts. To detect how fast the applications can absorb the in-
coming data, in our evaluations, we will give burst external
inputs instead of slow streams. This extreme situation shows
us the potential of an incremental framework. Specifically,
for different evaluations, we will create a large static datasets
simulating the whole dataset and small datasets simulating
the streams. These changing datasets will be written into
the incremental framework as fast as possible, in order to
trigger the applications. We will also run the MapReduce
applications on both the entire input dataset and the smaller
changing datasets. Running MapReduce only on the smaller
changing datasets (streams) actually shows its best perfor-
mance since they process only the updated data.

3. REQUIREMENTS
According to our plan, there will be several requirements on
the Cloud platforms.

First, since we aim at providing performance test, the abil-
ity of quickly deploying different Cloud environments will be
critical to us. Deploying large-scale private Cloud in public
Cloud platform is always a time-consuming job. Allowing
developers to make customized images will be a huge bene-
fit. Furthermore, if the platforms provide deployment tools
like Docker and the relevant management services, the eval-
uation process will be easier too.

Second, the performance tests require a consistent service
level guarantee. As we intend to evaluate the performance
of different frameworks, the deployed Cloud should keep a
consistent service level with the same resources. Providing
a way to users to guarantee this will be a benefit.

Third, the platform should have a good scalability, which is
an important factor to our experiments. It will be a huge
benefit to scale out to test the performance under real-world
workloads.

4. CONCLUSION
In this project, we propose a detailed testing and evalu-
ation on the scaling incremental applications and existing
processing frameworks in Cloud environment. As we have
described, this type of applications is more and more im-
portant in real-world scenarios. The results of this project

not only help application developers to choose right imple-
mentation strategies for their applications, but also help the
framework developers to improve their productivity.
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