
Improving LUC in Cloud Environments
Kirk W. Cameron and Ali R. Butt

Virginia Tech

{Email: cameron@cs.vt.edu}
Summary

In current work1, we are exploring how to adapt and design advanced operating systems to maximize performance in

power scalable environments. For example, we have observed significant performance slowdowns when CPU power scaling

is combined with parallel applications that frequently access I/O. Since power scaling will be essential to future cloud

systems to balance infrastructure restrictions on power with performance needs, we must identify the root causes of these

types of slowdowns. Our preliminary work shows that identifying root causes requires a combination of exhaustive

experimentation with deep knowledge of (and access to) the underlying hardware and software. While our current work has

been limited to bare-metal Linux platforms, we have determined slowdowns are highly sensitive to increases in system

scalability and variability. Thus, we require experimental platforms of scale that enable: 1) exploration of slowdowns with

and without virtualization; 2) exploration of slowdowns in the context of software and hardware heterogeneity; 3) the ability

to install and analyze experimental operating and runtime systems; and 4) the ability to measure power consumption and

performance. Should the Chameleon and CloudLab platforms provide these capabilities, we plan to make use of them to

create new systems that Limit Unintended Consequences (LUC) and maximize performance in power scalable

environments.

Preliminary Work

Future cloud systems will be enormous, complex and

heterogeneous. It is widely acknowledged that designing efficient

systems at scale is a grand challenge for the community [1]. To

address inefficiencies, the components of these complex systems

perform a growing set of tasks themselves. For example,

processors [5], memory [3], and disks [6, 7] are capable of

independently managing their power consumption. Such devices

attempt to balance user performance demands with the energy

constraints of the physical infrastructure.

The combination of device independence with unprecedented

degrees of parallelism in software and hardware at system scale

leads to ever more complex interactions among operating systems,

virtualization, parallel and distributed applications and services,

and hardware. Thus, identifying the optimal performance

configuration of applications and services on clouds at runtime is

exceedingly difficult because the variance among data points may

exceed the best average performance operating point.

Figure 1 provides an example of this phenomenon. The figure

plots the performance for 64 threads of a parallel transaction

workload at various power/frequency settings from 1.6 GHz to 3.1

GHz. Performance is the ratio of speedup versus the slowest

frequency and the performance gets worse with higher

frequencies. This slowdown is difficult to observe in practice

because the standard deviation (shown as the gray/blue area

surrounding the line plot) often exceeds the performance

difference between two data points.

For example, Figure 1 shows the 2.0 GHz frequency has a standard deviation of 12% while 1.7GHz on average performs

10% better. Thus, taking a single measured sample at the low performance range of 1.7 GHz and a single sample at the high

performance range of 2.0 GHz results in the flawed conclusion that 2.0 GHz should be selected for better performance.

Therefore, a runtime system attempting to adapt processor power/frequency settings [4] and optimize based on sampled

runtime performance information could be ineffective and result in significant performance loss.

1 NSF CSR:Small: Exploiting slowdowns for speedup in power-scalable HPC systems. PI: K. W. Cameron, co-PI: Ali Butt, $500,000, 8/14--7/17.

Figure 1 Filebench varmail speedup ratios normalized to the lowest

available CPU frequency (1.6 GHz) – higher is better. The grey/blue

area shows one standard deviation from the mean. Nehalem (HDD)
System: Dell T3500 using a W3550 3.00 GHz quad-core with 6 GB of

DDR3 RAM and a 250 GB 7200 rpm hard drive.

Figure 2 Filebench varmail speedup ratios normalized to the lowest
available CPU frequency (1.6 GHz) – higher is better. Each line shows

speedup for (number of threads) x (number of files). For 64 threads,

performance drops significantly at higher frequencies.

Additionally, the same code may perform differently at scale. Figure 2 shows the same example from our transaction

workload for varying the number of threads from 4 to 64. The slowdown at higher frequencies does not occur until 64

threads where variance between runs increases. Beyond 64 up to 256 threads (not shown) the performance is similar to the

432 thread cases.

Figures 1 and 2 show the assumption that increasing power/frequency improves (or at least doesn’t hurt) performance is

flawed. Without a deeper understanding of the causes of these types of slowdowns and isolation of the root causes, runtime

systems cannot avoid these types of slowdowns altogether. A runtime system using sampling to schedule threads runs the

additional risk of falling victim to the previously discussed variance issue.

Unfortunately, at the same time complexity threatens system efficiency, performance has never been more critical to the

worldwide economy. According to Amazon’s Greg Linden and Google’s Marissa Meyer2: “Amazon found every 100ms of

latency cost them 1% in sales. Google found an extra .5 seconds in search page generation time dropped traffic by 20%.”

High frequency trading also relies on data centers where power management is considered critical yet a few milliseconds

of latency loss can result in millions of lost profits3.

To address the Unintended Consequences that are increasing in frequency with the growth in system complexity, we are

building runtime systems that identify the causes of performance loss in power scalable systems. For the slowdowns we’ve

isolated so far, causes include 1) additional false sharing in the OS that occurs when processor performance/power is

increased; and 2) scenarios where asynchronous I/O is not enabled and hurts performance significantly. Our work [2] shows

that our optimized designs that address these two causes result in performance gains from 10-60% depending on I/O

workload and system characteristics. For future work, we have also identified a number of other slowdown scenarios that

have as yet undetermined root causes.

Our Experimental Cloud Needs

The exhaustive testing necessary for 95% confidence in the results shown in Figures 1 and 2 requires thousands of

experiments and takes weeks on our 12-16 node cluster. This is primarily due to the high variance in the measurements that

increase with scalability, complexity, and heterogeneity. This requires 40-50 runs per data point for the desired confidence.

Currently, we have limited testing primarily to the Linux ext3 and ext4 filesystems since this reduces the problem space.

We have also completely ignored the effects of virtualization since 1) the additional abstraction obfuscates isolating

performance slowdowns; and 2) the additional software increases the problem space significantly. Currently experiments

varying scale and heterogeneity are limited to our testbed, but our results (See Figures 1 and 2) indicate sensitivity to these

parameters that must be explored further. We need access to environments (e.g. Chameleon and CloudLab) that allow us to

migrate our studies and solutions from bare-metal OS’s to virtualized systems. This will enable us to continue to improve

the efficiency of future highly scalable and heterogeneous cloud systems and services.

References

1. “Nitrd lsn workshop report on complex engineered networks,” 2012;

https://www.nitrd.gov/Publications/PublicationDetail.aspx?pubid=52.

2. Chang, H., B. Li, M. Grove and K. Cameron, “How processor speedups can slow down i/o performance,” Proceedings of 22nd

IEEE International Symposium on Modeling , Analysis, and Simulation of Computer and Telecommunication System (MASCOTS’14),

IEEE, 2014.

3. David, H., C. Fallin, E. Gorbatov, U.R. Hanebutte and O. Mutlu, “Memory power management via dynamic voltage/frequency

scaling,” Book Memory power management via dynamic voltage/frequency scaling, Series Memory power management via dynamic

voltage/frequency scaling, ed., Editor ed.^eds., ACM, 2011, pp. 31-40.

4. Ge, R., X. Feng and K.W. Cameron, “Performance-constrained distributed dvs scheduling for scientific applications on power-

aware clusters,” Proceedings of ACM/IEEE International Conferences for High Performance Computing, Networking, Storage, and

Analysis (SC05), IEEE Computer Society, 2005, pp. 34.

5. Ranganathan, P., P. Leech, D. Irwin and J. Chase, “Ensemble-level power management for dense blade servers,” Proceedings

of ACM SIGARCH Computer Architecture News, IEEE Computer Society, 2006, pp. 66-77.

6. Sehgal, P., V. Tarasov and E. Zadok, “Evaluating performance and energy in file system server workloads,” Proceedings of

FAST, 2010, pp. 253-266.

7. Verma, A., R. Koller, L. Useche and R. Rangaswami, “Srcmap: Energy proportional storage using dynamic consolidation,”

Proceedings of FAST, 2010, pp. 267-280.

2 http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
3 http://dealbook.nytimes.com/2014/07/07/no-need-to-demonize-high-frequency-trading/

http://www.nitrd.gov/Publications/PublicationDetail.aspx?pubid=52

