Design and Implementation of a Cloud-based and
Distributed Graph Engine for Large Datasets

Qing Cao* and John A. Stankovic’

*Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN, US
TDepartment of Computer Science
University of Virginia, Charlottesville, VA, US

Abstract—In this position paper, we consider the problem
of query processing related to graph problems using a cloud
computing platform for extremely large-scale complex networks.
Existing work suffers from three major shortcomings: they
cannot run in parallel over many servers in cloud-computing
platforms, they are too slow in generating solutions for many
simultaneous queries, and they require too much overhead to
store the outputs from their algorithms. In this paper, we propose
a cloud-based graph processing engine for finding approximate
results with an elastic accuracy for extremely large datasets,
where we aim to achieve a much higher throughput than existing
methods. As a case study, we demonstrate how this engine can
find near-shortest paths. Specifically, we develop algorithms based
on the engine to take advantage of two ideas: pre-computing and
storing algorithm-specific digests of graph topology in each node,
and generating solutions for queries by exploiting node level
parallelism that naturally emerges after nodes are assigned to
multiple servers. We also list several challenges we have identified
to develop this proposed engine. We believe that such a graph
processing engine is useful for many types of tasks such as social
networks, biological networks, transportation scheduling, and
others.

I. INTRODUCTION

Various graph models are commonly used to analyze real-
world phenomenon, such as online social networks (e.g.,
LinkedIn or Facebook), biological networks, road networks,
among others. Due to the ever increasing number of nodes,
many seemingly straightforward operations have become chal-
lenging when extremely large graphs are involved. For exam-
ple, consider the classical problem of finding the shortest paths
between any two nodes. Existing solutions to the problem
of finding the shortest path, such as the well-known Floyd-
Warshall algorithm, takes O(V3) time to find all-pair shortest
paths. However, such approaches suffer from two limitations in
scalability: first, they cannot be easily modified to handle many
simultaneous queries over extremely large graphs, which may
comprise of millions or even billions of nodes. In such cases,
finding solutions will be way too slow for most applications.
Second, they are centralized, which means that they can not
be easily implemented on distributed computer clusters, such
as cloud computing platforms, in an efficient manner.

Motivated by these limitations, our main position in this
paper is that we need a distributed, approximate, and cloud-
based graph based engine for processing a large number of
simultaneous queries over many graph features. For example,
hosting a large-scale social network service usually requires

many queries on the degrees of nodes and paths connecting
nodes to be answered efficiently. In such cases, the engine
can provide the results in a timely manner, therefore, greatly
simplifying the task of building large-scale complex server-
side applications that rely on the query results to provide
services for users.

This proposed work and position is enabled by the recent
progress on cloud computing platforms. In recent years, cloud
computing platforms have rapidly been developed for provid-
ing elastic computing infrastructure based on users’ demands.
Through the use of broadband networks, virtualization, re-
source management, and data center technologies, even users
with limited budgets can quickly deploy their scalable services
for handling a large number of customers. The success of
this rent-for-use model is bringing considerable changes to the
research community as well, and various recent initiates, such
as the NSFCloud infrastructure, has attracted great interest to
deploy research prototypes that would not be possible without
such infrastructure support. Similarly, this work can benefit
greatly from this new generation of innovative infrastructure
of cloud computing, where our engine can be deployed as a
service on such clouds to provide elastic services to end users.

We hope with the support from cloud experimental facilities
by NSF, we can develop the engine to run on these facilities,
where it will assign nodes to servers based on factors such
as their degrees, computational loads, and query volumes.
This is used to partition the computational overhead evenly
across cloud servers. Note that there are two features of this
engine that make it novel. First, it is designed to provide
approximate, rather than accurate, answers to queries, where
we hope to generate nearly optimal solutions so that we can
save greatly on the overhead and computation cost. To this
end, applications that generate queries (on the client side) can
provide their desired accuracy levels so that the engine will
allocate proportional computational and communication re-
sources to achieve differentiated levels of accuracies. Second,
it is designed to execute on multiple servers in a distributed
manner, so that it can fully exploit the underlying computation
power and storage space.

II. CASE STUDY OF FINDING SHORTEST PATHS

A. Problem Formulation

As a case study, we consider the following query processing
task based on this engine: how we can answer queries regard-



(a) Vertex t selected as the
root, and a spanning tree is
built using the BFS search

(b) Level 1 nodes assigned
with coordinates

Fig. 1.

ing possible paths between any two nodes in extremely large
graphs. The nature of the graphs can be flexible, ranging from
simple graphs to complex networks such as those that follow
the power law distributions of node degrees. As mentioned in
the introduction, we expect the users will query the graph pro-
cessing engine in the cloud infrastructure for node distances,
while the engine will respond to the users in a timely and
scalable manner.

B. Approach Overview

Our approach is inspired by the previous work on graph
embeddings found in the literature for simple graphs such
as transportation graphs, which in turn was based on the
classical landmark based approaches. The overall idea of such
frameworks is that they pre-compute and store a digest of
graph topology in each node, so that any distance query can be
answered by initiating a routing procedure from the the source
node to the destination node. We observe that our approach
for this specific case study highlights the two cornerstones
for the graph processing engine: we aim to exploit algorithm-
specific digests and node-initiated sessions to build various
algorithm implementations. Note that the digests and node-
initiated sessions are similar to templates: their particular
semantics are defined by the algorithms. This is very similar
to the way other cloud-based data processing algorithms, such
as MapReduce, are developed: the developers will need to fill
in the semantics of functions, while the data processing engine
only provides templates.

C. Algorithm Design

In this section, we describe the details of digests and node
sessions of our algorithm. We next describe these two stages
separately.

The precomputation step involves choosing a few nodes as
landmarks, and then computing for every node a “topology
digest” based on these landmarks. These digests will be used
in the approximate path finding step later. Briefly, as illustrated
in Figure 1, this process starts by selecting a few nodes as
roots, denoted as tg, t1, etc. These nodes will be used to
construct trees. Usually, we select roots based on their degrees:
those nodes that have the highest degrees will be chosen as the
roots. Next,we perform a breadth-first-search operation from
the root to every other nodes in the tree structure. Therefore,
for each node in the tree, we can find its children nodes,
based on which we can assign them with coordinates. Figure
1(b) to Figure 1(d) show the children node coordinates. The

(c) Level 2 nodes assigned
with coordinates

4 0

v, ©

v, )

Vs @

vy @
Vs w1
Vs @0
v, (1.00)
Vg (.10

(1,0,0),
(d) Level 3 nodes assigned
with coordinates

(1,1,0),
(e) Final assignments of
coordinates

This figure shows forming a tree structure and then assigning coordinates to nodes based on their relative orderings in the tree.

coordinates assigned to each node is shown in Figure 1(e),
where the distances and topology stored at each node becomes
their path digests.

In the second stage, we start new tasks initiated at each
node for finding paths between a pair of nodes. For example,
if a query is for finding the shortest path from v4 to wg
in Figure 1, we can start a session from the server storing
vy independently from other queries. Therefore, such tasks
are referred to as parallel node sessions that can be started
at multiple servers simultaneously, and their algorithms are
based on the path digests we collected earlier. The goal is
to get the a small error, that is, the number of hops should
be similar to the optimal path. We have developed different
ways to implement this specific algorithm, and they can lead
to different approximation ratios by using varying amount of
computational resources.

We have carried out preliminary studies using a single
workstation, where the results demonstrate that the approach
is promising, as tested on datasets with Twitter, Facebook, and
Google webpage graphs. We hope to run this engine on cloud
platforms in the future when facilities are available.

III. CHALLENGES AND CONCLUSIONS

We have identified a few challenges that we will investigate
in the future, such as the best ways to allocate nodes to
cloud servers to achieve load-balancing, how to make the
approximate solutions to be scalable to dataset sizes, and
how to handle dynamic graphs with changes to their vertices
and edges. Such research challenges present problems that
researchers need to address in the future. Furthermore, a good
implementation will also adapt to the underlying networking
fabric of the cloud processing platform, so that it can take
advantage of the shorter latencies between servers that are
nearer to each other.

Our overall vision is that we can provide graph query
processing as a generic cloud-based service, and propose to
design a cloud-based engine for graph processing. We note
that our approach naturally allows users to choose either
to keep their graph datasets private, or make the datasets
public. The former may be applied to the scenarios where the
datasets contain sensitive data, while the latter can be graph
datasets that are scientific by nature, such as biology graphs
or geographic maps. If successful, we believe that a generic
graph processing engine will have a wide range of applications
and bring benefits for the research community.



