
Managing Large Scale Transactional Data in The Cloud∗

Divyakant Agrawal
Department of Computer Science

University of California,
Santa Barbara, CA 93106

agrawal@cs.ucsb.edu

Amr El Abbadi
Department of Computer Science

University of California,
Santa Barbara, CA 93106

amr@cs.ucsb.edu

October 31, 2014

At UC Santa Barbara, we have been exploring innovative methods for managing large data sets
in the cloud, and more specifically in a scalable data center settings. Our research has focused on
the development of data management methods that are fault-tolerant, efficient, scalable and elastic.
These systems have been built and experimentally validate using local clusters of servers as well as
on AWS.

The past decade has witnessed an increasing adoption of cloud database technology, ie, scalable
and highly-available database systems that provide ACID guarantees for distributed transactions.
However, only a small number of cloud databases provide strong consistency guarantees for dis-
tributed transactions, due to practical challenges that arise because of distributed lock management
in the cloud setting, where failures are the norm, and human administration is minimal. Most dis-
tributed optimistic concurrency control proposals in the literature deal with distributed validation
but still require the database to acquire locks during two-phase commit, when installing updates of
a single transaction on multiple machines. In MaaT, we re-design optimistic concurrency control
to eliminate any need for locking during two-phase commit, while handling the practical issues of
resource waste due to transaction restarts, as well as the need for exclusive locking during the final
phase of the two-phase commit. Our preliminary experimental results demonstrate that MaaT
provides many practical advantages over lock-based methods in the cloud context [3].

Our most recent work has focused on fault-tolerance in the face of catastrophic disasters. This
requires geo-replication of data across different data centers. Various geo-replication approaches
have been recently proposed, including Spanner [1] and MDCC [2]. Unlike other approaches, we
have recently proposed Replicated Commit [4], which provides a high level abstraction of the in-
dividual data centers, and specifically distinguishes between the low communication costs within a
data center and the high communication costs across different data centers. This is in contrast to
commercial enterprises that have been designed, largely, with the notion that the network between
data centers is dedicated and fully controlled by the cloud operator (e.g. Google does not share
its cross data center networks with other vendors). Thus we believe Replicated Commit offers the
right abstraction for implementing geo-replication in the Cloud. Replicated Commit builds on the
abstraction of viewing each data center as a single and autonomous entity with low cost commu-
nication within the data center, but with significantly more communication latency across data
centers. In order to execute transactions, a commit protocol needs to be executed on the different
objects being accessed. To achieve consistency across different copies of an object, a replication
protocol needs to be executed. Replicated Commit uses two phase commit to atomically execute

∗This work is partially supported by NSF Grants CNS-1053594 and IIS-1018637

1



transactions within a data center, when a transaction accesses multiple objects. For replication
across data centers, Replicated Commit uses Paxos to ensure consistency across the different copies
of objects in different data centers.

In general, maintaining consistency across data centers is expensive and requires wide-area com-
munication. This renders current solutions to either settle for weaker forms of consistency or suffer
from large delays. In Message Futures [5], we propose a strongly consistent concurrency control
manager with low commit latency to ensure mutual consistency of replicas across data centers. By
judicial message passing of relevant information and at opportune time intervals, Message Futures
can also enforce different priority levels of access, where each data center experiences a commit
latency relative to its priority. In fact, in many common cases, transactions can be committed
locally without the need for any communication. An experimental evaluation of Message Futures
on a geo-replicated multi-data center setting demonstrates that Message Futures achieves a commit
latency around one RTT (Round-Trip Time) for data centers with identical priority, and a latency
comparable to committing locally for high priority data centers.

Motivated by the challenges in reducing commit latency, more recently, we derived a lower-
bound on commit latency, namely, that the sum of the commit latency of any two data centers
is at least the Round-Trip Time (RTT) between them. We use the insights and lessons learned
while deriving the lower-bound to develop a commit protocol, called Helios, that achieves low
commit latencies. Helios actively exchanges transaction logs (history) between data centers. The
received logs are used to decide whether a transaction can commit or not. The earliest point in the
received logs that is needed to commit a transaction is decided by Helios to ensure a low commit
latency. Helios is theoretically able to achieve the lower-bound commit latency. We are currently
experimentally validating that in real world deployments, Helios has a commit latency that is close
to the optimal.

Our research would clearly benefit from an experimental cloud platform, which would enable
us to explore the various tradeoffs among our diverse approches as well as in comparison to other
proposed systems.

References

[1] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, JJ Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, et al. Spanner: Google’s globally-distributed database. In OSDI,
pages 251–264, 2012.

[2] Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, and Alan Fekete. Mdcc: Multi-data
center consistency. In EuroSys, pages 113–126, 2013.

[3] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.
Maat: Effective and scalable coordination of distributed transactions in the cloud. PVLDB,
7(5):329–340, 2014.

[4] Hatem A. Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Abbadi.
Low-latency multi-datacenter databases using replicated commit. Proceedings of the VLDB
Endowment, 6(9):661–672, 2013.

[5] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Message futures: Fast commitment of
transactions in multi-datacenter environments. In CIDR 2013, Sixth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings,
2013.

2


