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Abstract—In this paper, we discuss about experimenting PGA,
a Parallel Giraph-based Genome Assembler that we develop to
address challenges involved in large scale genome assembly which
recently made its way to the forefront of big data challenges.
We juxtapose current state of the art big data analysis software
and available supercomputing resources with our assembler
that serves as a very good example of both data as well as
computation intensive job. Our initial result shows PGA works
several magnitudes faster than the contemporary parallel de novo
assemblers due to its in-memory graph processing. However, we
think its performance is still suboptimal because of hardware
resource constraints. We believe that PGA has enough potential
to perform 2 to 3 times faster on large scale sequencing data if
tested with optimally tuned hardware. Furthermore, the growing
size of raw sequencing data imposes a storage and memory
challenges in the entire assembly process. This motivates us
to experiment our assembler’s performance on top of different
NSF-Cloud infrastructures like Wisconsin/Cisco or Clemson/Dell
clusters. Availability of large storage space per node in TB scale
(unlike the Utah/HP clusters with only 120GB Flash) as well
as large memory per node make these two clusters a possible
solution to the suboptimal performance of our assembler. We
discuss the challenges in assembling large human genome on
LSU-supercomputing cluster, SuperMikell to justify our resource
requirement and provide a brief intuitive analysis of our resource
requirement on these two NSF-Cloud clusters.

I. INTRODUCTION

From a communication-network to a social-network,
personalized-medicine to genome-sequencing, large scale
graphs are ubiquitous. Efficient processing of these graphs is
important for modern data analysis that led the development
of several graph processing frameworks in last few years,
especially after the introduction of Hadoop, the open source
map-reduce framework that became the de-facto standard of
distributed computing. On the other hand, the recent ad-
vance in massively parallel high throughput dna sequencing
instruments, prompted the development of de novo genome
assembly. These instruments produce vast amount of high
quality short read sequences which generate good quality
contigs with high coverage when assembled de novo. Careful
construction and efficient analysis of de Bruijn graphs are
central to de novo assembly without reference genome. Very
few of the existing assemblers can exploit the underlying
parallelism of de Bruijn graph analysis. In order to address the
challenges in real time large genome assembly, we use Apache
Giraph to develop PGA that assembles short reads several
magnitudes faster than contemporary assemblers. However, we

think PGA’s performance is suboptimal and can show huge
improvement if tested on hardware tuned for current state of
the art big data analytics softwares. The rest of the paper is
organized as follows. Section 2 introduces the concept of de
novo sequencing and a brief overview of PGA. Section 3 and 4
describes our testing infrastructure and the data size to handle.
Section 5 describes current results and shows the challenges
in assembling large human genome data (450GB) on one of
the LSU supercomputing clusters, SuperMikell, which justifies
our motivation for using NSF-Cloud. Finally, in section 6 we
provide an intuitive analysis for our NSF-Cloud requirement.

II. PGA SOFTWARE OVERVIEW
A. De Novo Genome Assembly

De novo genome assembly refers to construction of an
entire genome sequence from a large amount of short read
sequences when no reference genome is available. De Bruijn
graph construction and removal of read errors (tips and bubble)
from this graph is central to de novo sequencing. Finally,
resolving repeated regions followed by a scaffolding phase
produces long size scaffolds that represents a region in the
actual genome.

B. Architecture

We classified de novo sequencing in three different phases.
a) Building de Bruijn graph b) Error removal from de Bruijn
graph and c¢) Scaffolding. We store short reads in fastq format
in hdfs as input to PGA. In the first phase, we use Hadoop in
order to build de Bruijn graph from these short reads. Once the
graph is constructed we use Giraph in the subsequent phases to
analyze the graph in order to construct appreciably long contigs
and scaffolds. We use Giraph for two distinct reasons. a) In-
memory graph processing performs several magnitudes faster
than disk based approach. However, the graph size is limited
by the available memory. b) Although, the vertex centric,
synchronous graph processing model works slower than its
asynchronous variation in many cases, it makes the de Bruijn
graph analysis extremely easy.

III. AVAILABLE TESTING INFRASTRUCTURE

We test PGA mainly on SuperMikell. This LSU supercom-
puter offers total 382 computing nodes, however, maximum of
128 can be allocated at a time. Each node has two 2.6GHz
8-core Sandy Bridge Xeon 64-bit processors, 32GB RAM and
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Fig. 1: PGA Results on SuperMikell

500GB HDD. However, only 240GB local hard disk space is
available as filesystem data storage for Hadoop. The rest is
mounted on Lustre. All nodes are connected through 40Gb/s
infiniband network with 2:1 blocking ratio.

We also tested some of the large data set (eg. 450GB of
human genome) in a 15-node Supermicro cluster with 256GB
RAM, 12TB hard disk and 32 cores per node. The high size
of RAM, hard disk and higher number of cores per node
are exactly in contrast with SuperMikell. We use it in order
to pinpoint the problems and challenges that we observed in
SuperMikell (discussed in section 5b)

IV. HUGE GRAPH AND SHUFFLED DATA

Fig. 1a shows the size of intermediate shuffled data and the
actual size of the graph generated by the graph building phase
of PGA for some of the data sets. The shuffled data clearly
indicates very high local disk space requirment, whereas, the
actual graph size indicates the huge memory requirement for
in-memory graph analysis with Giraph in subsequent phases.
It is worthy to mention here that our next plan is to assemble
large scale metagenome data. In recent years, high throughput
DNA sequencing machines like Illumina genome analyzer
frequently produce raw metagenome data that is more than
ITB in size. We show an estimated de Bruijn graph (17TB)
and intermidiate shuffled data size (100TB compressed) for
1TB of raw data. This high volume of data and corresponding
challenges on SuperMikell motivates us to explore NSF-Cloud
resources in order to find the most optimal one for our purpose.

V. RESULTS AND CHALLENGES ON SUPERMIKEII
A. Successful Assemblies

In SuperMikell, we tested several smaller and medium size
genomes including staphylococcus aurious (691MB), Ecoli
(3.8GB), human chromosome (10GB), rice (12GB) etc. We
also assembled 200GB of human genome data which produces
almost 2TB of intermediate de Bruijn graph. We used 128
nodes for this assembly and the entire assembly took almost
10Hrs. In this paper, we selected the rice genome to discuss
PGA performance on SuperMikell. Fig. 1b shows an expected
monotonically decreasing time curve with increasing number
of nodes which proves the scalability of PGA. Fig. 1c shows a
performance comparison between PGA and Contrail, another

Hadoop based assembler. The in-memory graph processing
with Giraph in PGA clearly outperforms Contrail which uses
pure disk-based map-reduce approach to analyze the graph.

B. Challenges on SuperMikell

As a showcase, we assembled a 450GB human genome
data (NCBI website, Accession #SRX016231) with our current
infrastructure. Size of the de Bruijn graph for this is 3.8TB.
Although, we assembled it in our Supermicro cluster in almost
one day, in SuperMikell we identified two major challenges.
First, during build-graph (Hadoop only job), mappers produce
huge shuffled data (30TB) which is almost same as aggregate
local disk space in 128 SupeMikell nodes. In a few of the
nodes, its size is larger than the available local disk space,
resulting in failure of the entire job. Although, compression
algorithms like snappy which reduce the size by almost a factor
of 3 (as shown in figure la) can be extremely useful here, it
seems unavoidable while assembling 1TB metagenome data.
Second, the build-graph phase produces a huge de Bruijn graph
that needs to fit in memory for the subsequent Giraph based
graph processing phases.

VI. POSSIBLE SOLUTION WITH NSF-CLOUD
A. Wisconsin/Cisco cluster

Each node in this cluster consists of 16 cores, 128GB
RAM and 2TB harddisk as mentioned in the website. 450GB
human genome produces almost 30TB of shuffled data which
means, in terms of storage, we need 15 nodes only. But, the
corresponding de Bruijn graph size is almost 4TB that needs
to fit in memory. For other OS related work and monitoring,
we keep 4 cores and 8GB RAM per core aside which gives
96GB effective memory space per node. So, in order to fit the
entire graph in memory, we need almost 43 nodes. Similarly,
almost 180 nodes can fit the entire 17TB de Bruijn graph in
memory that is estimated for 1TB of metagenome data.

B. Clemson/Dell cluster

This cluster offers 16 cores, 256GB RAM and 4TB hard
disk storage per Hadoop-node as mentioned in the website.
Keeping 4 cores and 16GB RAM per core aside, we need
almost 21 nodes for assembling the human genome and almost
91 nodes for assembling metagenome with PGA.



