
Providing Full Isolation in Cloud System Software

John Lange
University of Pittsburgh
jacklange@cs.pitt.edu

1 Introduction
An ongoing challenge to deploying cloud based ap-

plications, particularly at scale, has been the inability of
the underlying infrastructure to effectively provide per-
formance isolation to users and their applications. While
a significant amount of existing work has addressed this
issue in multiple ways [3, 4], most of these solutions have
focused on the allocation and isolation of the underly-
ing hardware resources for concurrent workloads. Unfor-
tunately, while these approaches do provide measurable
benefits in consolidated environments, we have shown
that they are incomplete because they do not consider in-
terference effects at the system software layer [2, 1]. For
many applications, operating system (OS) level services
and resources have just as prominent an effect on perfor-
mance as the underlying hardware they provide access to.
Therefore, in order to provide a fully isolated execution
environment, it is necessary to address performance inter-
ference at both the hardware and software layers of the
system.

Providing fully isolated environments to cloud work-
loads requires support in the underlying system software
which in many cases can only be achieved through mod-
ifying (or possibly replacing) the OS and runtime envi-
ronment. One example of our work focuses on providing
software level performance isolation through the use of
lightweight co-kernels. In our architecture, multiple het-
erogeneous operating system instances co-exist on a sin-
gle server platform, and directly manage independent sets
of hardware resources. Each co-kernel executes as a fully
independent OS environment and does not rely on any
other OS instance for system level services, thus avoid-
ing cross workload contention on OS resources. Each
co-kernel is capable of providing fully isolated system
software environments, or enclaves, to local consolidated
workloads. This approach allows a system administrator
to dynamically compose independent enclaves from arbi-
trary sets of local hardware resources at runtime based on
applications’ resource and isolation requirements. An ex-
ample of such a system configuration is shown in Figure 1.

The foundation of our work is based on previous
work in specialized operating systems for High Perfor-
mance Computing (HPC) and supercomputing environ-
ments. HPC applications are notable for both their large
scalability requirements as well as their strong inter-node
dependencies and synchronization behaviors. This poses
a significant challenge to an OS architecture as single
node performance issues propagate throughout the entire
system due to the lock step nature of the computation.
For this reason HPC OS kernels target performance con-
sistency as the paramount design goal, even above over-
all performance. This is in contrast to most commod-
ity systems which primarily focus on system performance
and are willing to sacrifice occasional overheads and slow
downs in order to improve it. To achieve performance
consistency, specialized HPC OS environments tend to
follow a lightweight philosophy that restricts the number
of OS features and severely limits the sharing of hardware
resources. We claim that the same design decisions that
allow strong performance consistency in an HPC environ-
ment can be leveraged to provide strong performance iso-
lation in a consolidated cloud environment.

Our co-kernel architecture allows on-demand runtime
deployment of independent lightweight co-kernels on the
same local node to meet the workload requirements pre-
sented by an application. In our model, a cloud service
will be able to offer specialized execution environments
that provide improved SLA metrics based on isolation
guarantees provided by the underlying system software.
Such approaches are already in use at many cloud service
providers, where customers can select the degree of re-
source contention they are willing to be subjected to in
return for increased usage fees. These lightweight envi-
ronments would be capable of providing Platform-as-a-
Service environments through the use of specialized run-
times or more general purpose Infrastructure-as-a-Service
functionality through the use of a an available lightweight
virtualization layer. These isolated environments would
not require dedicated servers, racks, or datacenters, but
would instead rely on the partitioning of local hardware
resources among a set of independent OS environments.

1

1

Cores

2

3 4

Socket 1

Memory
Region A

5

Cores

6

7 8

Memory
Region B

Socket 2

PCI

Kitten
Co-Kernel

Memory
Region C

Linux

NIC 2 NIC 1

Figure 1: A co-kernel environment on a partitioned cloud
environment

This approach allows the local resource management ser-
vice to make localized layout decisions dynamically based
on either a global policy or by monitoring system perfor-
mance.

2 Testbed Requirements
To further our research agenda there are two capabili-

ties that would be beneficial from a cloud testbed. First
is the ability to evaluate research on system software ar-
chitectures directly in the environment, and second is the
ability to monitor the system on a large scale and collect
system performance measurements from the system dur-
ing normal operation. These capabilities would allow us
(and other systems researchers) to not only evaluate their
own work in the system, but also to gain a greater un-
derstanding of system software behavior from an actual
cloud architecture (something that is very difficult if not
impossible to do currently).

Experimental Testbed The first requirement we have
of a testbed is the ability to easily and rapidly deploy cus-
tomized kernel images on the testbed systems. At min-
imum our work would require the enabling of a set of
standard Linux configuration options in an otherwise un-
modified kernel, however the ability to load a fully custom
kernel image could prove to be necessary in the future for
our work. Furthermore, it is likely that other systems re-
searchers would need the ability to make kernel modifica-
tions as well. Second, we would need the ability to gain
root level privileges on the systems themselves. Our work
is done in the context of Linux kernel modules, which re-
quire administrative permissions to both load and manage
during run time. Therefore, broad root level access or at
least sudo access with suitable file permissions would be
required.

In addition to the administrative requirements our work
is based on the ability to dynamically partition a local

compute node’s resources. This capability needs to be
supported at both the software (administrative) level as
well as in the hardware itself. Therefore, any testbed
architecture would ideally include hardware that allows
hardware-level partitioning to allow both performance
and administrative isolation. For example, SR-IOV ca-
pable PCI devices, IOMMUs, and large scale multi-core
NUMA systems provide this capability (to varying de-
grees) on current generation platforms.
Workload Monitoring The second main feature we
would like to see on a cloud testbed is the ability to ef-
ficiently monitor the underlying system software. Ideally
this capability would allow us to consistently monitor the
OS + runtime as the system is used by a wide range of
users and workloads. These measurements are necessary
in order to gain a better understanding of the characteris-
tics of workload interference and how system software ar-
chitecture impacts it. Such access would include the abil-
ity to access the measurements collected from hardware
performance monitoring features as well as kernel level
measurements. These capabilities are currently available
via a number of mechanisms (perf, ftrace, etc), so at min-
imum having these features enabled should be a require-
ment. Ideally the testbed would also include an integrated
and centralized infrastructure to enable both the collection
and storage of measurement data in a way that is easily
gathered, accessed, and shared.

References
[1] HPMMAP: Lightweight Memory Management for

Commodity Operating Systems. In Proceedings of
the 28th IEEE International Parallel and Distributed
Processing Symposium, (IPDPS) (2014)).

[2] KOCOLOSKI, B., OUYANG, J., AND LANGE, J. A
Case for Dual Stack Virtualization: Consolidating
HPC and Commodity Applications in the Cloud. In
Proceedings of the third ACM Symposium on Cloud
Computing (SOCC) (2012).

[3] POPA, L., KUMAR, G., CHOWDHURY, M., KRISH-
NAMURTHY, A., RATNASAMY, S., AND STOICA, I.
Faircloud: sharing the network in cloud computing.
In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures,
and protocols for computer communication (2012).

[4] SHUE, D., FREEDMAN, M., AND SHAIKH, A. Per-
formance Isolation and Fairness for Multi-Tenant
Cloud Storage. In Proc. 10th Symposium on Op-
erating Systems Design and Implementation (OSDI)
(2012).

2

