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Abstract—The Chameleon project developed a unique experi-
mental testbed by adapting a mainstream cloud implementation
to the needs of systems research community and thereby demon-
strated that clouds can be configured to serve as a platform
for this type research. More recently, the CloudBank project
embarked on a mission of providing a conduit to commercial
clouds for the systems research community that eliminates much
of the complexity and some of the cost of using them for
research. This creates an opportunity to explore running systems
experiments in a combined setting, spanning both research and
commercial clouds. In this paper, we present an extension to
Chameleon for constructing controlled experiments across its
resources and commercial clouds accessible via CloudBank,
present a case study of an experiment running across such
combined resources, and discuss the impact of using a combined
research platform.

Index Terms—research cloud, research testbeds, multi-cloud,
networking

I. INTRODUCTION

Computational experiments comprise a large spectrum of
scientific computations, from large-scale simulations, to just-
in-time analytics, or performance studies. Different types of
such experiments place different requirements on the exper-
imental container in which they execute from the perspec-
tive of isolation (shared, multi-tenant, or completely isolated
environment), levels of access, configurability, interactivity,
and performance. Within this spectrum, computer science
systems experiments are perhaps the most challenging to
provide for as many – though not all – often require high
level of configurability and access (bare metal reconfigurability
with specialized network configuration capabilities), strong
performance isolation, interactive access, and the ability to
experiment at high performance.

To adequately address this level of challenge, traditional
testbeds that provided experimental capabilities for computer
science research have generally been configured by technolo-
gies developed in-house [1], [2]. The Chameleon testbed [3]
broke with this pattern by adapting a mainstream open source
cloud technology, OpenStack, to provide similar capabilities.
This implementation strategy carries a range of practical bene-
fits – such as familiar interfaces for users and operators, or the

opportunity to leverage contributions from a large development
community – but it also creates the potential to contribute
back, and thus influence the debate on the best cloud config-
uration to support computer science research. With commer-
cial cloud providers, such as Amazon Web Services (AWS),
increasingly willing to offer more flexibility in the form of
e.g., bare metal instances [4], and NSF’s investment in the
CloudBank [5] initiative to make commercial clouds available
to the systems research community, this debate is gaining in
importance, and could result in significant broadening of the
opportunities for computer science experimentation.

The ability to leverage commercial cloud resources could
open up significant opportunities for research. With their
greater geographic dispersion, greater diversity of resources,
and greater scales – though perhaps lesser customization to
research needs – the commercial clouds provide an interesting
offering to supplement specialized testbeds like Chameleon.
In [3] we articulate the specific extensions required to adapt
clouds to the needs of systems research; in this paper we
examine the question of what experiments could leverage both
research and commercial clouds and how such experiments
should be configured to control wide-area network perfor-
mance to enable repeatably. Specifically, we describe our ap-
proach to constructing such an experiment in the context of the
experimental workflow stages [6] of an experiment distributed
over the Chameleon testbed and AWS cloud accessed via
CloudBank.

The specific contributions of the paper are as follows:
• We present Overcast, a recipe and a set of tools, expressed

as a Jupyter notebook, that allows experimenters to
construct a class of experiments that are distributed over
research and commercial clouds.

• We describe an experiment case study using and ex-
periment that leverages Overcast to evaluate controlled
layer 2 network paths (AWS DirectConnect) spanning
resources on Chameleon, Internet2 CloudConnect, and
AWS; in particular, we show how VM instance types
affect achievable bandwidth.

• We discuss insights obtained from using research and
commercial clouds in conjunction, comparing their ca-



pabilities, in particular cost.
The rest of the paper is organized as follows. In Section 2
we describe tools and methods for constructing multi-cloud
experiments. In Section 3, we show how those tools can be
used to construct a non-trivial networking experiment. We
follow by a discussion of cloud capabilities and cost, discuss
related work, and conclude in Section 6.

II. OVERCAST: DEPLOYING AN EXPERIMENT OVER
MULTIPLE CLOUDS

Computer science experiments are typically enacted in
stages [6] beginning with experiment design, identifying suit-
able resources, allocating and configuring them, running the
experiment itself, and finally analysis. We analyze these stages
below, and compare and contrast approaches used for exper-
iment development on Chameleon and commercial resources
available via CloudBank.

Both Chameleon and CloudBank provide user access via
federated login – Chameleon via Globus Auth [7], CloudBank
via CILogon [8] – so that once logged into one system a user
can use the other without entering a password again. To use
system resources, a user needs to be associated with a project
that has active allocations. In Chameleon those allocations
consist of Service Units (SUs) which represent one hour
of wall clock time on a mainstream server. To request an
allocation, users are first certified for PI eligibility according
to infrastructure-specific policies [9], [10]. In Chameleon they
can then propose a project to be awarded an allocation. In
CloudBank, verified PIs are allocated pre-determined funds
which represent direct funding for a specific project to be spent
on one or more public clouds. Within each system, the PI or
their delegate can manage allocations to track spending and
grant membership in the project to others.

In the first step of the experimental workflow, users can
browse resources available for experimentation but their de-
scriptions differ among the systems. Chameleon resource
descriptions are fine-grained so that users can browse the
exact node configurations including processor types, cache
hierarchies, I/O device types, rack placement, etc. Commer-
cial providers typically represent their resources as “instance
types” (see e.g., [11]) and provide general information about
vCPUs/CPUs, memory, storage, network, and much less de-
tailed information about processors. Further, information about
resources in Chameleon is being kept rigorously up-to-date
– component upgrades might affect experiments sensitive to
hardware such as e.g., power management or performance
variability – the testbed is then versioned so that experimenters
can verify this information at a glance and users are offered a
suite of verification tools for sanity checks. Commercial clouds
do not track the hardware evolution and do not provide such
versioning though Chameleon’s verification tools, based on
standard Linux commands (such as e.g., “biosdecode” and
“dmidecode” to get BIOS settings) can be used to mitigate
these shortcomings to some extent.

Once selected, resources can be allocated. A notable dif-
ference between Chameleon and commercial resources is the

support for advance reservations which allow Chameleon users
to reserve availability of resources ranging from nodes, to net-
works, and IP addresses for a specific time in the future [12].
In contrast, commercial clouds rely primarily on on-demand
availability; vehicles such as “reserved instances” [13], [14]
represent a billing discount, while “capacity reservations”
based on an up-front payment that reserve capacity for specific
type of instance [15], [16] work in a similar way to allocation
on Chameleon. Another significant difference is how resources
are described: Chameleon allows users to specify resources at
different levels: from model-level descriptions (e.g., “I need
four nodes with at least 2GB per core”) to indicating a specific
node in the system, essential for experiments that require
control of hardware variability. In commercial clouds the only
way to describe resources to be allocated is the instance type;
while this provides a high-level description, it might map to
different types of resources, without the user being able to
control the mapping [3].

In both Chameleon and commercial clouds allocated re-
sources are configured by deploying disk images to create
bare metal or virtual machine instances; since many users
will want to use consistent configuration across a distributed
experiment it is useful to consider how portable those images
are. Most cloud platforms have specific requirements for the
format of a disk image (e.g., RAW or QCOW2 [17]), its disk
layout (e.g., whole disk or partition image), or the environment
included in the image (e.g., cloud-init for injecting SSH
keys or a DHCP client configured on specific interfaces)
making images incompatible between various providers. They
all however support the same general structure (e.g., the SSH
key injection pattern via cloud-init) that can be leveraged by
tools, such as OpenStack qemu-image convert [18] and AWS
VM Import/Export [19] to convert between images; thus, to
use a Chameleon image on AWS, it has to be converted to
RAW format (if not RAW already) and then converted to AMI
[20] using AWS VM Import. This common structure and the
resulting portability options are an important consequence of
the decision to configure a research testbed as a cloud [3].
The fact that Chameleon is not only a cloud, but an OpenStack
cloud in particular, facilitates things even further: for example,
the metadata service in OpenStack supports EC2-compatible
API [21] which means that the images designed for EC2
will work with OpenStack directly. That said, some aspects
of portability may be complicated by issues higher in the
stack: for example, Chameleon includes utilities for system
verification and snapshotting on its base images that will not
be present on images imported from AWS. We provide a more
general discussion of image conversion tools, including tools
like Packer [22], in [23].

Orchestration, which allows users to deploy configurations
consisting of multiple interdependent images , networks, and
other cloud services automatically, is a related issue and pro-
vides a further demonstration of the advantages of configuring
a CS research testbed as a cloud. OpenStack Heat [24] and
CloudFormation [25], used for orchestration in Chameleon and
AWS respectively, both use declarative languages (YAML or
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Fig. 1: Chameleon connected to AWS using Internet2 CloudConnect

JSON) to define the desired configuration template. In fact,
OpenStack Heat provides direct compatibility with the AWS
CloudFormation template format, so that many existing Cloud-
Formation templates can be launched on OpenStack [26] (see
[27] for exceptions) though not vice versa. While orchestration
templates still represent the most popular orchestration tool,
their transactional and declarative nature makes them inflexible
for experimentation. For this reason, the Chameleon project
integrated Jupyter notebooks to provide an imperative-style
alternative. A similar trend is followed by commercial clouds,
e.g., the AWS Cloud Development Kit (CDK) [28] allows
users to define a AWS infrastructure using a programming
language.

Network configuration is a critical element of any exper-
iment spanning research and commercial clouds. The tradi-
tional option is to assign domain specific public IP addresses to
all nodes and rely in the Internet for wide-area communication.
This simple approach suffers from limitations to security, per-
formance, and repeatably caused by the open and uncontrolled
public Internet. Another option is to use a virtual private
network (VPN) as a tunnel between distributed sites; the
VPN protects the architecture from common security attacks
and allows remote cloud resources to be assigned local IP
addresses and managed as if they were on-site. Both of these
options have the advantage of easy implementation, but are
limited by the inconsistent performance of the public Internet,
an important consideration for many experiments. To solve this
problem, we can utilize direct low-level network connections
between the research and public clouds, however creating
them is challenging for an independent researcher. While most
public clouds provide low-level networking services (e.g. AWS
Direct Connect [29], Azure ExpressRoute [30], or Google
Dedicated Interconnect [31]), using them is typically expensive
[32]; on the research cloud side, they can involve complicated
campus network configuration arrangements that often limit
access to this type of experimental configuration to a few a
few select scientists or campus IT staff themselves.

Since 2016, the Chameleon testbed has provided direct
connect using Internet2’s Advanced Layer 2 service (AL2S)
[33] via ExoGENI [34]. More recently, Internet2 has deployed
its CloudConnect service [35] that enables members to connect
AL2S end points, such as those used for Chameleon direct
connections, to AWS Direct Connect, Azure ExpressRoute,

and Google Dedicated Interconnect sites. Thus, to create an
experimental topology between Chameleon and commercial
cloud the first step is to create a direct connection between
Chameleon and a public cloud accessible using Internet2’s
CloudConnect. Additionally, since public cloud direct connec-
tions configure routing between the cloud and external facility
using BGP, a user also needs to deploy a BGP router on
their resources. To implement that, we developed a Jupyter
notebook that deploys fully configured BGP routers. Further,
the BGP router can, optionally, be deployed on a dedicated
OpenFlow networking switch or as software Quagga router
existing on a standard x86 compute host. The full networking
configuration is depicted in Figure 1.

III. AN EXPERIMENT CASE STUDY: DIRECTCONNECT

This section describes a multi-cloud experiment using
Chameleon and AWS resources connected using dedicated
circuits provided through Internet2’s CloudConnect service.
The aim of the experiment is to assess the bandwidth spanning
these clouds. We also explore to what extent AWS instance
types achieve targeted network performance.

A. Setup

The configuration of the experiment can be seen in Figure 1.
A BGP router was deployed on a Chameleon host connected
to two dedicated 10 Gbps tenant networks. One was an
externally connected network that was stitched to an Internet2
CloudConnect BGP router. The other was an internal network
connected to other compute nodes on Chameleon. On the
AWS side, the CloudConnect BGP router was connected to a
Virtual Private Gateway (VPG). The router in a Virtual Private
Cloud (VPC) was configured with default routes to a private
Internet Gateway and custom routes through the dedicated
Internet2 circuit to the isolated tenant network on Chameleon.
The three BGP routers cooperate to advertise routes between
user-controlled subnets hosted on Chameleon and AWS. The
infrastructure’s configuration is described in the Chameleon
tutorial on using Internet2 CloudConnect.

The Chameleon resources were located at the University
of Chicago site and the AWS resources were from the us-
east-2a region in Ohio. On Chameleon, the end hosts were
baremetal x86 (Haswell) servers with 24 compute cores, 132
GB of RAM, and 10 Gbps network. Six different AWS



TABLE I. EC2 Instance Type and the Bandwidth Limit

EC2 Instance Type Description AWS Network Limit
t2.micro 1 CPU, 1 GB mem (free) Low to Moderate

t2.2xlarge 8 CPU, 32 GB mem Moderate
t3.2xlarge 8 CPU, 32 GB mem 5 Gbps

m5a.2xlarge 8 CPU, 32 GB mem 10 Gbps
m5dn.2xlarge 8 CPU, 32 GB mem Up to 25 Gbps

c5n.metal 72 CPU, 196 GB mem 100 Gbps

instance types were evaluated. Each instance used the imported
CentOS7 image and was hosted on a VM or bare metal
server with the hardware properties and stated networking
bandwidth limitations in Table I. The AWS stated networking
limitations ranged from “Low to Moderate” to “100 Gbps”.
The CloudConnect circuit limited the maximum bandwidth
to 5 Gbps. To configure Chameleon nodes, we used the
Centos7 image provided by the testbed. To achieve a consistent
configuration on AWS, the same image was converted from
QCOW2 to RAW type, then uploaded to AWS S3, and then
converted to AMI using AWS VM Import using one of the
methods described in Section II. All hosts were tuned by
using ESnet’s recommendations [36] for large wide area data
transfers as in Table II.

B. Experiment

The experiment used iperf3 [37] to test the TCP bandwidth
achievable between the baremetal host on Chameleon and each
of the targeted AWS instance types over the deployed direct
connect circuit. Each instance type was tested using 30 second
tests with both single and multiple streams in each direction.
Each test was executed 15 times. The average, minimum, and
maximum egress and ingress bandwidth are shown in Figure 2.

C. Discussion

Other studies have shown that achieving repeatable network-
ing results on public clouds is difficult or even impossible [38].
Although using direct connections eliminates some of the
unpredictability of the public Internet it does not change the
way public clouds control network performance.

Figure 2 shows the bandwidth achieved between Chameleon
and the AWS instances. Each group of columns shows the
bandwidth achieved by an AWS instance type. The smallest
two instance types were described by AWS as having ‘low’
and ‘moderate’ bandwidth limitations. In the experiments,
these limitations were effectively 1 Gbps in either direction.
The ‘low’ bandwidth instance achieved less consistent perfor-
mance and appeared to be the subject of periodic rate limiting.
Continuous transfers with the ‘low’ bandwidth node would re-
sult in extremely low rate limiting of approximately 65 Mbps.
Each iperf3 test was executed for 30 seconds. In order to avoid
artificial rate limiting, the tests were performed 5 minutes
apart. Applications requiring continuous 1 Gbps performance
should opt for at least ‘moderate’ network performance.

The CloudConnect circuit across Internet2 was limited to 5
Gbps and the remainder of the instance types should have been
able to fully utilize the circuit. Their AWS network limitations

TABLE II. Host Network Tuning Parameters

Setting Value
net.core.netdev max backlog 250000

net.core.rmem max 67108864
net.core.wmem max 67108864

net.ipv4.tcp congestion control htcp
net.ipv4.tcp rmem 4096 87380 33554432
net.ipv4.tcp wmem 4096 65536 33554432

net.ipv4.tcp mtu probing 1
net.core.netdev budget 600
net.core.default qdisc fq

interface MTU 9000
interface txqueuelen 10000

ranged from 5 Gbps to 100 Gbps. The experiment attempted
to maximize the bandwidth using 1, 2, 4, and 8 parallel
network streams. Ideally, the the maximum bandwidth could
be achieved with a single TCP stream. However, wide area
TCP data transfers are adversely affected by small numbers
of dropped packets. The data shows that all instance types
achieved network performance near the maximum 5 Gbps.
However, the single stream performance increased for higher
bandwidth instance types even though the instance’s network
limitation was well beyond the CloudConnect circuit. Further,
the m5dn.2xlarge virtual machine performed as well as the
c5n.metal node for egress and slightly better for ingress even
though the bare metal node had more memory, more compute
cores, and a higher bandwidth limitation.

The reason that a single stream could not achieve the
maximum bandwidth on virtual instances that had greater
than or equal to 5 Gbps networks was that the DirectCon-
nect configuration studied resulted in more dropped packets
for instances with lower network limitations. The dropped
packets occurred in both directions and were typically seen in
small bursts. As a result, maximum AWS egress and ingress
bandwidth could only be achieved with multiple TCP streams
or on instances with over provisioned networks. In addition,
the average single stream egress bandwidth is higher than the
ingress bandwidth for each instance type but the minimum
single stream ingress bandwidth is higher than the minimum
egress bandwidth. This means that single stream ingress flows
are more often affected by small bursts of dropped packets
while single stream egress flows are more likely to experience
large bursts of dropped packets.

IV. DISCUSSION

Combining commercial and research clouds significantly
expands the resource portfolio available to science, increasing
opportunities to build more complex experimental topologies,
deploy them on more sites, provide access to more diversity,
as well as more scale. While bare metal offerings are few,
information about resources and their evolution is not always
available, and the user typically has no control over the specific
architecture their experiment will map to, not all experiments
require these features as exemplified by our case study.

Overall our experiences configuring an experiment spanning
Chameleon and commercial clouds available via CloudBank
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Fig. 2: Chameleon-to-AWS CloudConnect bandwidth for various instance types.

demonstrated that configuring a research testbed as a cloud
brought the unexpected benefit of improved portability. While
digital artifacts the users produce, such as images and orches-
tration templates, are not always directly compatible (though
we noted ready-made conversion tools for some scenarios),
they represent a similar structure, captured by such tools
as e.g., use of cloud-init for SSH key injection. Converting
them to achieve consistent configuration on experiment re-
sources deployed on Chameleon and AWS is thus a relatively
simple matter of updating well-known qualities rather than
rebuilding them from scratch. In addition to convenience,
this also addresses an issue of consistency and ultimately
also reproducibility of how exactly a configuration can be
or was repeated in a different setting. Similarly, configuring
networking relied on the existence of similar concepts at edge
on both ends of the connection

Another issue distinguishing research and commercial
clouds is the cost to the scientific community. To create a rough
comparison of cost we first paired the resource types available
on Chameleon with AWS instances that are comparable or less
powerful to create a conservative estimate. For example, our
Haswell compute nodes [39] were paired with “c5d.metal”
– but our GPU P100 nodes were paired with “p3.8xlarge”
even though “p3.8xlarge” are not bare metal as AWS does not
offer comparable bare metal resources. We then took actual
usage numbers for each Chameleon resource type, computed
the number of hours they were used over the first 5 years of
the project, and multiplied it by the price of the corresponding
AWS resource. The total number of node hours over all the
resource types were 5,676,114, representing an estimated cost
of $30,353,133 ($49,172,075 including overhead which would
normally be applied to this type of purchase though is waived
through CloudBank usage). In comparison, the total funding
received for Chameleon over this period of time is projected
to be $16.6M. Further, our rough estimate did not include the
Chameleon KVM cloud, data download or storage, any of the
special features or specialized services (like BYOC [40] used
in the experiment), or startup costs, all of which would have
made the Chameleon resources even more cost-effective. On

the other hand, Chameleon provides significantly lesser avail-
ability than commercial clouds (a factor partially mitigated
by advance reservations described in Section II) and probably
lesser reliability; while those are of course desirable to the
research application, increasing them would also increase the
cost. Thus, this is another area where research and commercial
clouds provide different offerings at a different cost.

V. RELATED WORK

Investigating methods of building an integrated environment
across multiple clouds is almost as old as cloud computing
itself [41]. In particular, works like [23], [42], [43] investigate
issues of resource management, image portability, and orches-
tration; our focus is different in that we investigate this issue
from the perspective of providing an experimental container
for computer science systems research which among others
includes management of low-level networking resources, and
consider the issue of cost.

Multiple projects also sought to characterize the networking
performance of research versus commercial clouds [44], [45].
Our approach pushes this line of investigation further by
focusing on low-level networking services like DirectConnect
and shows a measure of similarity in the problems.

VI. CONCLUSIONS

In this paper, we present a recipe and a set of tools,
expressed as a Jupyter notebook, that allows experimenters
to construct a class of experiments distributed over research
and commercial clouds, specifically the Chameleon testbed
and commercial clouds available via the CloudBank project.
In doing so, we discuss the different capabilities of these two
different types of clouds and show how they can be used to
construct experiments spanning both.

Our observations show that the decision to configure
Chameleon as an enhanced cloud pays dividends in the context
of such experiments. Specifically, similar structure of disk
images and orchestration templates used in experiments of
this type facilitates portability and maintaining a consistent
experimental environment. Further, similarities between the
ExoGENI stitchport and direct connects implemented by



commercial clouds allow experimenters to leverage the same
concepts when constructing wide-area circuits.
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