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Our Interest

Our interest is in engineered systems, such as
⇒ A convergence of communication, computation, and storage!

Complexity arises in such systems from their size, structure,
operation, evolution over time, and human involvement.†

†
NITRD Large Scale Networking (LSN) Workshop Report on Complex Engineered Networks, September 2012.

Syrotiuk (ASU) Design and Analysis of Experiments Chameleon User Meeting 2019 4 / 39



What is an Experiment?

Formally, an experiment is
a series of tests,
in which purposeful changes are made to the input variables of a
process or system,
to observe and identify the reasons for changes that may be
observed in the output response.

Factors
Test x1 x2 . . . xp Responses

1 vx1 vx2 . . .vxp y1,1 . . . y1,r
2 vx1 vx2 . . .vxp y2,1 . . . y2,r
...

...
... . . .

...
...

...
...

N vx1 vx2 . . .vxp yN,1. . .yN,r
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Objectives of an Experiment

The objectives of an experiment include:
Determine which xi are most influential on the response y .

⇒ Screening.

Determine where to set the influential x ’s so that y is almost
always near the desired value.

⇒ Performance.
Determine where to set the influential x ’s so that the variability in y
is small.

⇒ Robustness.

Among others!
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“All experiments are designed experiments — some are poorly
designed, some are well-designed.” George E. P. Box
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The Strategy of Experimentation

The general approach to planning and conducting an experiment is the
strategy of experimentation.

Strategies include:

The best-guess approach.
The one-factor-at-a-time approach.

Consider a golf experiment:

Syrotiuk (ASU) DOE CUG Meeting 2019 8 / 15

This strategy may be useful when running a benchmark, but fails to
consider any possible interaction between factors!
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An Example Interaction

Congestion control in the TCP protocol:

In wireless networks, contention manifests itself as congestion.
But congestion control is the incorrect response to contention!
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Interactions

More formally, an interaction is the failure of a factor to produce
the same effect at different levels of another factor.
An example interaction graph for MAC/routing protocol interaction:
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Many examples of cross-layer interactions exist.
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Other Experimental Strategies

Use an experimental strategy in which factors are varied together!

A full-factorial experiment is
one in which every possible
combination of factor levels is
tested.

In a system with k factors,
each having two levels, the
full factorial experiment has
2k tests.

Factor levels
Test A B

1 1 0
2 1 1
3 0 0
4 0 1

Factor levels
Test A B C

1 1 0 0
2 1 0 1
3 1 1 1
4 1 1 0
5 0 0 0
6 0 0 1
7 0 1 1
8 0 1 0
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Other Experimental Strategies and Tools

There are many experimental strategies depending on the objective:
Classical: screening, response surface, factorial, mixture, etc.
Special purpose: covering arrays, space filling designs, nonlinear,
balanced incomplete block designs, etc.

There are tools to help in experiment design and analysis:

Make friends with a statistician!
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Guidelines for Designing Experiments

1 What is the problem?
2 Choose factors, levels, and range.
3 Select response variable(s).
4 Choose experimental design.
5 Perform the experiment.
6 Conduct a statistical analysis of the data.
7 What are the conclusions and/or

recommendations?

Steps 4–6
usually need to
be repeated!
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Values of Factors

The values a factor may take on can be:
Discrete if there are a limited number of alternatives.

Continuous if there an infinite number of values between any two
values.

⇒ How to sample the range?

Categorical if there is no natural order between the categories
(e.g., eye colour).
Ordinal if an ordering exists (e.g., exam results, socio-economic
status).
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Parameters used in Wi-Fi Conferencing Scenario
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TABLE V: Parameters and values used in experimentation (default values from Ubuntu in bold).

Parameter Identifier Values
Band band 2.4, 5 GHz
Channel channel 1, 6, 11 (2.4 GHz); 36, 40, 44 (5 GHz)
Wi-Fi bitrate bitrate 6, 9, 12, 24, 36 Mbps
Transmit power txpower 1, 2, 4, 7, 10 dBm (2.4 GHz); 7, 8, 10, 13, 16 dBm (5 GHz)
MTU mtu 256, 512, 1024, 1280, 1500 bytes
Transmit queue length txqueuelen 10, 50, 100, 500, 1000 packets
Queuing discipline qdisc pfifo, bfifo, pfifo fast
IP fragment low threshold ipfrag_low_thresh 25%, 50%, 75%, 100% of high threshold
IP fragment high threshold ipfrag_high_thresh 16384, 65536, 262144, 1048576, 4194304 bytes
UDP receive buffer minimum udp_rmem_min 1.9231%, 10%, 50% of maximum
UDP receive buffer default rmem_default 0%, 25%, 50%, 75%, 100% from minimum to maximum
UDP receive buffer maximum rmem_max 2304, 10418, 47105, 212992 bytes
UDP transmit buffer minimum udp_wmem_min 1.9231%, 10%, 50% of maximum
UDP transmit buffer default wmem_default 0%, 25%, 50%, 75%, 100% from minimum to maximum
UDP transmit buffer maximum wmem_max 4608, 16537, 59349, 212992 bytes
UDP global buffer minimum udp_mem_min 25%, 50%, 75% of maximum
UDP global buffer pressure udp_mem_pressure 0%, 33.338%, 50%, 75%, 100% from minimum to maximum
UDP global buffer maximum udp_mem_max 95, 949, 9490, 94896 pages
Robust header compression ROHC off, on (unimplemented)
Sensing sensing off, on (unimplemented)
Audio codec codec Opus, Speex
Audio codec bitrate codecBitrate 7600, 16800, 24000, 34000 bit/s (or nearest allowed by codec)
Frame length aggregation frameLen 20, 40, 60
Interference channel occupancy intCOR 10%, 25%, 50%, 75%, 90%

repeated a few times, except that on the final iteration,
the values were chosen to make the value frequencies
within each column as equal as possible. The final
locating array screening design consists of 109 tests.

We performed a recoverability test on the compressive
sensing matrix corresponding to the LA screening design
(see Section III-B). The ability to recover at least one
term enables us to construct our model one a term at a
time is exploited in the OMP and BT OMP algorithms.

There are 4134 columns in the compressive sensing
matrix arising from this locating array. This underscores
the impossibility of exhaustively searching the space of
all models, or even all models of a small size.

V. RESULTS

We ran a total of eight screening experiments. Five
replicates of the experiment using the locating array
screening design were run, while three replicates of a
fractional-factorial design were run for validation.

A. Results of LA Screening Experiments

Over a number of months, we ran five replicates of the
experiment using the 109-test locating array as the design
on the w-iLab.t testbed and collected measurements
of downlink exposure and MOS values for each listener
node, together with the uplink exposure at the speaker
node. We thus had exposure values for the speaker node
and MOS values for each listener node.

In these replicates, the number of listener nodes avail-
able ranged from 33-35. Of these available listeners, only
a few of them (0-5) collected responses for all tests.
Most listeners failed to collect responses from 1-42 of
the 109 tests. We attempted to determine the cause of
these failures but were unable to do so. These may have
been due to the true cause involving more than one
interaction and/or being intermittent and thus violating
the assumptions needed by the (1, 2)-locating property.

We present the results of aggregating experiments
2 through 5, as these are similar to the individual
experiments’ results. The first data set was incomplete,
which prevents analyzing it correctly due to violating
the locating property. For MOS, the distribution after
aggregating across nodes and experiments is shown in
Fig. 4 (left). The aggregation used involves first nor-
malizing each node and then averaging across listener
nodes. We excluded missing values and values of 1.0 (the
minimum possible) from aggregation, except when every
node returned 1.0 for a particular test. This was done
because the piecewise linear shape of the distribution
suggests that the outcomes being reported as 1.0 actually
differ in audio quality, but are all so bad that MOS does
not measure the difference. The distributions of each
listener and of the aggregate all appear to be piecewise
linear. Because there is a region of constant value, no
transformation can bring it into a form optimized for
linear modelling. We choose to analyze the data as-is, but
it would be possible in principle to replace the distance
function used in BT OMP with a different function that

11
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Principles of Experimental Design

Three basic principles of experimental design are:
1 Replication: A repetition of the experiment.

Replication reflects sources of variability both between and
(potentially) within tests.

2 Randomization: The order the individual tests of the experiment
are to be performed are randomly determined.

Statistical methods require that observations (or errors) be
independently distributed random variables.

3 Blocking: A design technique used to improve the precision with
which comparison among the factors of interest are made.
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Tools to Configure and Orchestrate the Experiment

The w-iLab.t testbed uses OMF for resource allocation,
hardware and software configuration, and the orchestration of
experiments.
Measurement data from each test is collected and stored for
further processing.
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Other Considerations

Other considerations in running the experiment:
Resetting wireless interfaces for each test, i.e., rebooting.
Reinitialization, e.g., flushing buffers cached by the OS.

Collect measurements after a warm-up period.
⇒ Avoid transient effects (e.g., avoid cold caches).

Run the experiment long enough.
⇒ Ensure effects are observed (e.g., changes to buffer sizes,
queuing policies).
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Missing Data

Dirty data refers to data that are erroneous.

We encountered a problem with not all wireless nodes reporting a
measurement in every test.

How to handle missing data?

Ignore the missing value.
⇒ Effectively, a smaller sample size.

Estimate the missing value.
Substitute a mean, median, or mode.
Substitute a constant; add an indicator variable.
Impute a value using a model.

Use caution if the number of missing values is high!
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Outliers

What about outliers?

One of two situations could be true:

1 The actual value of the outlier
is correct.

⇒ Examine this observation
further to understand why it
occurred.

2 The value is incorrect.
⇒ It may be possible to find
out what is the actual value.
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Plot your Data!

The first thing you should always do is plot your data!
What is the distribution of your response?

A transformation of the data may be appropriate, otherwise the
assumptions underlying any statistical tests used may be
invalidated.

Syrotiuk (ASU) Design and Analysis of Experiments Chameleon User Meeting 2019 23 / 39



Box Plots: Display of Distribution

A box plot is a standardized way of
displaying the distribution of data.

The central rectangle spans
the interquartile range (IQR).
A segment inside the
rectangle shows the median.
The “whiskers” above and
below the box show the
locations of the minimum and
maximum.
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Scatter Plots

A scatter plot may be useful if the interesting feature is the pattern or
clustering (or lack thereof) in the data.
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Mean, Median, Mode and Distribution

The relationship between the mean, median, and
mode give hints about the data distribution.

In a normal distribution, the mean is
representative of the data set.
In an exponential distribution, the mode and
median are more representative.
In a bimodal distribution, no single metric
accurately describes the data.

sense of how the data is distributed and what the
expected behavior of the system will be.

In general, if the mean and median are rather close,
but the mode is vastly different (or there are two candi-
dates for the mode), a bimodal or multi-modal distribu-
tion is suggested (see Figure 1b). As described above in
Section 3.2.3, the standard deviation of a bimodal distri-
bution can be quite large, which can serve as a check on
the assumption that a distribution is normal.

It is important to note that these guidelines are not
fool-proof; comparing the mean, median, and mode can
only suggest the type of distribution from which data
was collected. Unfortunately, there is no rule of thumb
that always works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.

It is critical to select the appropriate metric of cen-
trality in order to properly present data. “No mathemati-
cal rule can tell us which measure of central tendency
will be most appropriate for any particular problem.
Proper decisions rest upon knowledge of all factors in a
given case, and upon basic honesty” [Gould96].

6.2 Expressing Variation
Measures of centrality are not sufficient to completely
describe a data set. It is often helpful to include a mea-
sure of the variance of the data. A small variance implies
that the mean is a good representative of the data,
whereas a large variance implies that it is a poor one. In
the papers we surveyed, we found that fewer than 15%
of experiments included some measure of variance.

The most commonly used measure of variance is
the standard deviation, which is a measure of how
widely spread the data points are. As a rule of thumb, in
a normal distribution, about 2/3 of the data falls within
one standard deviation of the mean (in either direction,
on the horizontal axis). 95% of the data falls within two
standard deviations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which follows a normal
distribution, the mean, median, and mode are equal, and
the standard deviation is approximately 40% of the
mean. However, in Figure 1b, which shows a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standard deviation is 75% of the mean3.
Figure 1c shows an exponential distribution where the
median and mode are close, but rather different than the
mean. (We discuss techniques for determining the distri-
bution of a data set in Section 6.3.)

3. The large standard deviation here is because the distribution
is bimodal, but bimodal distributions do not necessarily have
to have a large standard deviation. The peaks of a bimodal
distribution can be close together; in this example they are not.

Another metric for analyzing the usefulness of the
mean in an experiment is the margin of error. The mar-
gin of error expresses a range of values about the mean
in which there is a high level of confidence that the true
value falls. For example, if one were concluding that the
latency of a disk seek is within four percent of the mean,

Figure 1. Sample distributions. The relationship
between the mean, median, and mode give hints about the
distribution of the data collected. In a normal distribution,
the mean is representative of the data set, while in an
exponential distribution, the mode and median are more
representative. In a bimodal distribution, no single metric
accurately describes the data.

A: Normal Distribution

B: Bimodal Distribution

C: Exponential Distribution
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Margin of Error

The margin of error expresses a range of values
about the mean in which there is a high level of
confidence that the true value falls.

Claim: A new technique reduces latency by 10%.

A: no indication of the margin of error.
B: it is reasonable to conclude that latency
has been reduced.
C: the margin of error isas large as the
stated improvement. The 10% reduction in
latency falls within the error bars, and might
have arisen from experimental error.

the margin of error would be four percent. Assuming
that this margin of error had been computed for a 0.05
level of significance, then if the experiment were
repeated 100 times, 95 of those times the observed
latency would be within four percent of the value com-
puted in the corresponding experiment.

Figure 2 is an example of the importance of show-
ing the margin of error. In our example, Figure 2a is put
forward to support a claim that a new technique has
reduced latency by 10%. However, this graph does not
include any indication of the margin of error, or confi-
dence intervals on the data. If the margin of error is
small, as in Figure 2b, it is reasonable to believe that
latency has been reduced. Figure 2c, however, shows a
margin of error that is as large as the stated improve-
ment. The 10% reduction in latency falls within the
error bars, and might have arisen from experimental
error.

It is very useful to be able to place results in the
context of an error margin, and it is essential to be able
to do so when trying to determine the value of a new
technique.

A related problem, which appears when measure-
ments are taken, is mistaking measurement precision for
measurement accuracy. For example, on many versions
of Unix, gettimeofday() returns the current time in
microseconds (its precision), but is only updated every
ten milliseconds (its accuracy). Timing measurements
taken using gettimeofday() on these systems will be
rounded up (or down) to nearest multiple of ten millisec-
onds. In situations such as these, it is critical to be aware
not only of how precise a measurement is, but also how
accurate. On a system with a 10ms clock granularity, it
is a waste of time to attempt to make distinctions at the
microsecond level.

6.3 Probability Distributions and Testing
As stated above, normal distributions are commonly
found in nature, but rarely found in computer science.
When measuring experimental systems, one is more
likely to encounter other types of distributions. Unfortu-
nately, it is not a trivial task to correctly identify which
distribution best models a given a dataset. From a statis-
tical point of view, an estimate of the mean and standard
deviation of can be calculated from measured data, but
without knowing the actual distribution, it is impossible
to calculate the true mean and standard deviation. Fortu-
nately, there are simple methods for determining the dis-
tribution of a dataset.

Plotting a histogram of the values in a sampled data
set is easy way to get an idea of what type of distribution
the data follows. Figure 1 shows examples of several
common distributions with noticeably different shapes.
Normal distributions (Figure 1a) are common in the nat-

ural sciences, and often represent the characteristics of
repeated samples of a homogenous population. As men-
tioned in Section 6.1, skewed distributions often occur
when some phenomenon limits either the high or low
values in a distribution. Personal income is an example
of a skewed distribution. An exponential distribution
(Figure 1c) might be seen when modeling a continuous
memoryless system, such as inter-arrival time of net-

Figure 2. Graphing and Error Margins. The value of
the error margins will depict the results in completely
different ways.

A: Latency Improvement without error margins

B: Latency Improvement with small error margins

C: Latency Improvement with large error margins
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Presentation of Results

Misleading vs. well-labelled y axes:
By limiting the y axis to a narrow range of
values, there appears to be a large
difference between the two data sets in
the top figure.
The same data is shown in the lower
figure with a better y axis selection. The
data sets differ by only a small amount.

ments on the graph that depict the actual data) and the
minimization of chart ink (e.g., grid lines, labels, shad-
ing) [Tufte83]. A second suggestion is to use the “mini-
mum effective difference.” He suggests using varying
shades of the same color (grey in most systems publica-

tions) as opposed to different colors or stipple patterns.
Variations in shade are easily detected by the eye, and
provide a much wider range of variation with greater
simplicity [Tufte90].

8 Previous Work
The problems we discuss here are not limited to com-
puter science systems research. Cohen performed a sur-
vey of the 1990 AAAI conference [Cohen91], where he
found that 41% of systems-centered papers (papers that
discussed the behavior of a system that had been built)
described only a single illustrative example of the sys-
tem, without applying the system to any well-defined
benchmark. His later book on empirical methods for
Artificial Intelligence research [Cohen95] includes
information on experimental design, statistical methods,
and hypothesis testing.

Performing sound experimental systems research
requires a firm grounding in statistics, available in any
undergraduate statistics text [Walpole93, Larsen86].
“Back-of-the-envelope” calculations [Bentley84,
Bentley86] provide a useful method for sanity checking
results. Presenting data in a clear and effective manner is
equally important. Tufte’s books on information presen-
tation [Tufte83, Tufte90] are widely regarded as the pre-
mier references on this topic.

We found that many of the problems that arise in
the analysis of computer systems data occur in evolu-
tionary biology as well. We found a kindred spirit in nat-
ural scientist Steven Jay Gould. His book, Full House
[Gould96], clearly and entertainingly discusses how
seemingly reasonable statistical arguments can be far off
the mark. The book uses some of Gould’s favorite exam-
ples, including the disappearance of .400 hitting in

Figure 3. Misleading and Well-Labeled Y Axes. By
limiting the Y axis to a narrow range of values, there
appears to be a large difference between the two data sets
in the top figure. The same data is shown in the lower
with better Y axis selection. The data sets differ by only a
small amount.
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Figure 4. Improper graph selection. In this example,
the three data points represent three unrelated values that
are implicitly being compared. By representing this data
as a line graph, we suggest that we are presenting y as a
function of x.
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Graph Type When To Use
line graph The datapoints represent a continuum of

values on the X axis and the Y values are
a function of the X values. It is instructive
(and valid) to interpolate the values for
points that have not been explicitly mea-
sured.

scatter plot The interesting feature is the pattern or
clustering (or lack thereof) of the data.

bar graph Discrete values are being presented.
Comparison between values is useful, but
there is no constant relationship between
the values presented.

pie chart The issue of interest is how something
decomposes into its constituent elements.

Table 5. Hints on Graph Selection. These are general
guidelines for selection of an appropriate representation of
data.
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Figure 4. Improper graph selection. In this example,
the three data points represent three unrelated values that
are implicitly being compared. By representing this data
as a line graph, we suggest that we are presenting y as a
function of x.
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Presentation of Results (3)

Some common sense rules:
Use zero-based axes when data is plotted on a linear scale.
Use log scales to depict values that range over several orders of
magnitude.
Label all axes clearly, noting the units and scale if it is not linear.
Use consistent graphic representation throughout (i.e., colour,
shape).

(Some of these “rules” were broken in some of the earlier figures on
purpose!)
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Why do we need a New Screening Design?

The DOE community suggests using domain expertise to limit the
number of factors used in experimentation to about ten.

But the complex engineered systems of interest have one to two
orders of magnitude more factors!

Conventional screening designs are only useful to screen main
effects efficiently.
Our interest is also in screening two-way interactions.

⇒ This motivates a new screening design, a locating array.
Under what conditions can we find one?

Another day, a different talk!
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Example Locating Array

A (d , t)-locating array is a set of tests
that ensure that every set of d distinct
t-factor interactions appears in a
different set of tests.
This enables locating the causes of
outcomes, such as an interaction
most strongly influencing a response.
Example:

Three 2-value factors (A-C).
One 3-value factor (D).
(1,2)-locating.
The full design space has 24 tests.

Test A B C D
1 0 0 0 0
2 0 0 1 1
3 0 0 1 2
4 0 1 0 1
5 0 1 0 2
6 0 1 1 0
7 1 0 0 1
8 1 0 0 2
9 1 0 1 0

10 1 1 0 0
11 1 1 1 1
12 1 1 1 2
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Locating Arrays

Very little is known about locating arrays.
Fortunately, similar to covering arrays, their size is logarithmic in the
number of factors!

In the Wi-Fi audio streaming conferencing scenario, we control 24
potentially-relevant factors:

The full-factorial design is infeasible, with > 1012 tests!
A (1,2)-locating array has only 109 tests.

In another mobile wireless scenario, we controlled 75 parameters
spanning the MAC to the transport layer:

Again, the full-factorial design is infeasible, with > 1043 tests!
A (1,2)-locating array has only 421 tests.

Trade-off: Analysis is more complex because LA’s are often highly
unbalanced.
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The Three R’s

Reproducibility is a fundamental part of the scientific method.
It is different from repeatability where researchers repeat their own
experiment to verify their results, and

replicability where an independent group of researchers uses the
original experimental set-up to verify results.
Reproducibility consists of a replication study performed by an
independent group of researchers using their own experimental
set-up to confirm the results and conclusions of an earlier
experiment.
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Tools to Help with the Three R’s

Tools are starting to emerge to help:

The precís.
Install/execute scripts.
Snapshot system after it is configured and boot from
VM, e.g., Docker.
Sysadmin tools such as Ansible.
GENI-lib.
Follow a DevOps approach, e.g., using Popper, Jupyter.
Use and/or generation of traces, both of data and the
system.

Among others!
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A Few Suggestions

1 Follow the guidelines for designing experiments. In particular.
Choose an experimental strategy.
Collect statistically sound data (remember the principles of
replication and randomization).
Analyze the results properly.

Plot the data!

Present the data in a coherent and illustrative manner.
2 Familiarize yourself with tools to help!
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Questions?
Piled Higher and Deeper by Jorge Cham   www.phdcomics.com

title: "Data: by the numbers" - originally published 5/31/2004

Piled Higher and Deeper http://www.phdcomics.com/comics/archive_print.php?comicid=462

1 of 1 2016-05-02, 7:03 AM
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