Berkeley Data Analytics Stack:
Experience and Lesson Learned

Ion Stoica
UC Berkeley, Databricks, Conviva
Research Philosophy

Follow real problems

Focus on novel usage scenarios

Build real systems
 » Be paranoid about simplicity
 » Very hard to build complex systems in academia

Push for adoption
 » Develop communities
 » Train users

Disclaimer: By no means only way to do research!
A Short History

2006: Start research in cluster computing
 » Improve MapReduce scheduler (e.g., Fair Scheduler)

2009: Start building a Data Analytics Stack
 » Spring 2009: Mesos
 » Summer 2009: Spark
 » 2010: Shark
 » 2011: SparkStreaming
 » 2012: Tachyon
 » 2013: MLlib,
 » …
The Berkeley AMPLab

January 2011 – 2017
» 8 faculty
» > 60 students
» 3 software engineer team

Organized for collaboration

AMP

Algorithms
Machines
People

AMPCamp3
(December, 2014)

3 day retreats (twice a year)
220 campers (100+ companies)
The Berkeley AMPLab

Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)
Data Processing Stack

- Data Processing Layer
- Resource Management Layer
- Storage Layer
BDAS Stack

Spark Streaming

BlinkDB
Shark SQL

GraphX

MLBase
MLlib

Spark

Mesos

Tachyon
HDFS, S3, …
How do BDAS & Hadoop fit together?

- Spark
 - Spark Streaming
 - Shark SQL
- BlinkDB
- GraphX
- MLBase
 - MLlib
- Hadoop Yarn
- HDFS, S3, …
How do BDAS & Hadoop fit together?

<table>
<thead>
<tr>
<th>Spark Streaming</th>
<th>BlinkDB Spark SQL</th>
<th>GraphX</th>
<th>MLbase ML library</th>
<th>Hive</th>
<th>Pig</th>
<th>Impala</th>
<th>Storm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadoop Yarn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDFS, S3, …</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How do BDAS & Hadoop fit together?

- Spark Streaming
- BlinkDB
- GraphX
- MLbase
- Hive
- Pig
- Impala
- Storm

- Spark SQL
- ML library
- Hadoop MR

- Hadoop Yarn
- HDFS, S3, ...
Apache Mesos

Problem: per-framework cluster
» Inefficient resource usage
» Hard to experiment, upgrade
» Hard to share data

Solution: common resource sharing layer
» Abstracts ("virtualizes") resources to frameworks
» Enable diverse frameworks to share cluster
Apache Mesos

Open Source: 2010 (first release: 10,000 LoC)

Apache Project: 2012

Used in production at Twitter for past 2.5 years
 » +10,000 machines
 » +500 engineers using it

Third party Mesos schedulers
 » AirBnB’s Chronos
 » Twitter’s Aurora

Mesosphere: startup to commercialize Mesos
Mesos Meetups

Sept 2012: started Bay Area Spark Meetup
 » Now +800 members

Other user groups:
 » +700 members
 » New York, Atlanta, Seattle, Los Angeles, Paris (France), Amsterdam (Netherlands), London (UK)
Monthly Contributors

65 contributors for last 12 months
Selected Users

- Twitter
- eBay
- Ericsson
- Airbnb
- HubSpot
- Atlassian
- Google
- DigitalOcean
- Netflix

Technologies:
- Spark
- Mesos
- Tachyon
- HDFS, S3, ...
- BlinkDB
- SparkSQL
- GraphX
- MLBase
- MLlib
Apache Spark

Problem: Need to support workloads beyond batch (MapReduce)
 » Interactive, streaming, iterative (ML), graph processing

Motivating use cases:
 » Iterative computations (ML researchers in RADLab)
 » Interactive queries (Conviva, Facebook)
Apache Spark

Distributed Execution Engine
 » Fault-tolerant, efficient in-memory storage
 » Low-latency large-scale task scheduler
 » Powerful prog. model and APIs: Python, Java, Scala

Fast: up to 100x faster than Hadoop MR
 » Can run sub-second jobs on hundreds of nodes

Easy to use: 2-5x less code than Hadoop MR

General: support interactive & iterative apps
Apache Spark

Open Source: end of 2010 (<3,000 LoC, Scala)

Apache Project: 2013

Over time has grown to include key components
developing Big Data applications

<table>
<thead>
<tr>
<th>Spark Stream.</th>
<th>BlinkDB SparkSQL</th>
<th>GraphX</th>
<th>MLBase MLlib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>Mesos</td>
<td></td>
<td>Tachyon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDFS, S3, …</td>
<td></td>
</tr>
</tbody>
</table>
Spark Meetups

Jan 2012: started Bay Area Spark Meetup
 » +3100 members

Now
 » 33 cities
 » 13 countries
Meetups Around the World
Monthly Contributors

371 contributors for last 12 months
Compared to Other Projects

2-3x more activity than: Hadoop, Storm, MongoDB, NumPy, D3, Julia, …
Wide Adoption

All major Hadoop distributions include Spark

Beyond Hadoop

[Logos of Cloudera, IBM, MapR, Oracle, Pivotal, Amazon Web Services, DataStax, SAP]
Selected Users

- Yahoo!
- Amazon Web Services
- Adobe
- IBM
- Intel
- Verizon
- Red Hat
- Oracle
- SAP
- eBay
- Alibaba.com
- Cisco
- NBCUniversal
- Telefonica
- NTT Data
- 4B
- DataStax
- Pivotal
- Guavus
- ClearStory
- HHMI
- Janelia Farm
- Cloudera
- MapR
- Hortonworks
- Databricks
Events

December 2013
Talks from 22 organizations
450 attendees

June 2014
Talks from 50 organizations
1100 attendees

spark-summit.org
Tachyon

Problem:
» Different Spark contexts cannot share in-mem data

Solution:
» Flexible API, including HDFS API
» Allow multiple frameworks (including Hadoop) to share in-memory data
Tachyon

Open Source: Dec 2012 (<10,000 LoC)

Becoming narrow waist for storage in Big Data space
Release Growth

- Tachyon 0.1: 1 contributor
- Tachyon 0.2: 3 contributors
- Tachyon 0.3: 15 contributors
- Tachyon 0.4: 30 contributors
- Tachyon 0.5: 46 contributors
Open Community

- Berkeley Contributors
- Non-Berkeley Contributors (20+ companies)
Selected Users
Multiple File System Choices

- HDFS
- S3
- Tachyon
- OrangeFS
- Ceph
- NFC
- Network File System
Reaching Tipping Point

The Future Architecture of a Data Lake: In-memory Data Exchange Platform Using Tachyon and Apache Spark

October 14, 2014 | NEWS | BY PAUL M. DAVIS

Pivotal and EMC are betting on Spark cousin Tachyon as in-memory file system

by Derrick Harris | OCT. 14, 2014 - 11:47 AM PDT

Pivotal bets on Tachyon as next in-memory file system

Pivotal Expands on Data Lake Vision with Embrace of Project Tachyon

Oct 14, 2014
Training: Integral Part of Success

Aug 2012: AMP Camp training workshop
 » 150 in-person, 3000 online
 » Now a regular event (Strata NY, training +450 people)

This year alone
 » +1,800 trained people
Not Only Industrial Impact...

10s of papers at top conferences
» SOSP, SIGCOMM, SIGMOD, NIPS, VLDB, OSDI, NSDI, ...

6 Best Paper Awards
» SIGCOMM, NSDI, EuroSys (2), ICML, ICDE

Great crop of students
» Last two years: MIT (3), Stanford (1), MSR, ...

Open new research directions
» Resource allocation / microeconomy (DRF)
» Machine learning (Bootstrap Diagnosis)
And Even Saving Lives!

Scalable Nucleotide Alignment (SNAP)
» 3x-10x faster than state of art with same accuracy

ADAM Pipeline
» In use at the Broad Institute, Duke, Harvard, USCS
» 10x-50x faster than state of art

Already saving lives!
Research Philosophy

Follow real problems

Focus on novel usage scenarios

Build real systems
 » Be paranoid about simplicity
 » Very hard to build complex systems in academia

Push for adoption
 » Develop communities
 » Train users
Two Types of Research Proj.

New systems
 » Inspired from people using ours/existing systems
 » E.g., Spark, Shark/SparkSQL, MLlib, SparkStreaming, Tachyon, …

New algorithms, techniques, optimizations
 » Workload traces from large clusters (e.g., Facebook, Conviva)
 » E.g., LATE, Sparrow, PACMan, Scarlett, …
Challenge: Public Clouds

Hugely convenient and powerful
 » E.g., we won Terabyte sort benchmark this year using 206 AWS instances
 • 3x faster, 10x fewer machines than last year (Yahoo!)

 » Whatever you deploy on AWS/Azure/GC can be used by anyone
 • Large pool of users (beyond academia)
 • Easy to train

 » Large public data sets already available
 http://aws.amazon.com/datasets/
Why Use Experimental Testbeds?

Control and visibility
 » Bare-metal servers
 • Some clouds do provide this: Rackspace, DigitalOcean
 » SDN networks, RDMAs, …

Re-configurability, heterogeneity

Free!

Enable end-to-end / cross-layer optimizations
What about Data and Apps?

Ideally, unique data not found on other clouds

Example:
» Fine grained logs/traces of cloud usage (public clouds cannot provide this)
» Scientific data (?)

Applications
» Ability to run existing systems/apps (need to maintain them!)
» New education apps (?)
Conclusions

Have right expectations, key to success!

Be aware that:
- Public clouds cover a big range of needs for system research
- Insights for new use cases unlikely to come from these testbeds

Focus on what is unique:
- Cross-layer optimization exploiting access to network (SDN, RDMA), storage, bare-bone servers
- Make available unique data sets (e.g., fine grained logs)