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Abstract

Cloud computing motivates scientists and others with compute-
intensive workloads to demand efficient software. Efficient pro-
gram code consumes less energy and stretches cloud-computing
budgets farther. The cloud should be a good environment for the
performance-engineering of compute-intensive workloads, but that
potential is as yet unrealized, because cloud servers restrict the
ability of performance engineers to observe and control of impor-
tant hardware and system features.

This paper advocates that clouds support accurate performance
measurements for applications. Specifically, the cloud must al-
low performance engineers to observe and control key system-
performance features which otherwise adversely impact the vari-
ance of measured performance, often with systematic bias. An
added benefit is that control of these key features will make the
cloud well suited to performance-engineering techniques such as
autotuning, because the vast resources of the cloud will allow many
performance tests to be carried out in parallel.

1. Introduction

Cloud computing [1, 3] — the massive agglomeration of
multicore servers on which computing time can be rented—
has revolutionized the hosting of Internet content. A cloud
service can amortize system maintenance, freeing the con-
tent provider from ongoing administrative costs. Resources
can be dynamically reallocated based on demand, allowing
the content provider to “buy computation by the yard”.

An emerging use of clouds is for compute-intensive work-
loads, which are typical in computational science, real-
world modeling, machine learning, in-memory databases,
image and video processing, and a host of other applications
across a variety of domains. Although high-performance
computing (HPC) often commands attention with its mas-
sive 100, 000-processor supercomputers performing impor-
tant calculations, the sweet spot for computing remains
the shared-memory multicore computer, the workhorse for
cloud computing. Many compute-intensive applications can
run at close to peak performance on a multicore due to
its high communication bandwidth among processing cores,
whereas obtaining more than a few percent of peak perfor-
mance on a supercomputer is often difficult or impossible
due to communication-bandwidth limitations. Since multi-
core computers are far more cost effective for scientific ap-
plications that fit within the multicore’s memory, and clouds
provide this bargain commodity in vast quantity, it makes

sense to optimize around this sweet spot.

For instance, a scientist studying a real-world phe-
nomenon, such as a molecular simulation, may develop a
computer simulation on a multicore. In order to understand
the effects of different parameters, such as physical constants
or initial conditions, the scientist may wish to run the sim-
ulation many times, and now, clouds provide an attractive
cost-effective alternative to an owned machine. By deploy-
ing the simulations on hundreds of cloud servers simulta-
neously, the scientist can quickly explore the influences of
different parameter settings. The cloud is responsive. When
the scientist needs to compute, the vast cloud resources pro-
duce answers quickly. When the scientist needs to think,
sleep, eat spaghetti, etc., however, the cost for computing
is zero. In contrast, the traditional alternative of buying a
smaller dedicated computing system suffers under the scien-
tist’s bursty workload: the system is either underprovisioned
— the scientist must wait a long time for all the computa-
tions to finish — or overprovisioned — the resource sits idle
while the scientist tends to other things. Cloud computing
allows the scientist to enjoy low response time by running
many simulations simultaneously, yet pay nothing for the
resource when there’s no computing to do.

2. Software performance engineering

We contend that the economics of cloud computing —
the pay-as-you-go model — will increase the importance of
software performance engineering, the theory and practice
of making program code more efficient, sometimes called
tuning. Tuning an application on an owned multicore may
yield better performance on a single execution, but whether
it runs fast and sits idle or runs slow, the cost for comput-
ing remains the same, because the scientist has already in-
vested in the capital cost of the machine. In contrast, since
the cost of cloud servers depends on actual use, a scientist
is constantly motivated to be more cost aware, especially for
large deployments. Since fast code consumes fewer comput-
ing resources, efficiency pays off directly in dollar savings.
Before deploying a large-scale simulation on 100 or 1000
cloud servers, for example, a scientist with a limited budget
is well motivated to ensure that the application is efficient.
Fast code is cheaper.

How do you make code run fast? Basically, performance-
engineering methodology is just a simple iterative loop:



. Measure the performance of Program A.

. Make a change to Program A to produce a Program A’.
. Measure the performance of Program A’.

. IfA' beats A, set A =A’.

. If A is still not fast enough, go to Step 2.
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Of course, many important steps have been left out of this
tuning methodology, such as aggregating performance re-
sults across a test suite, testing the correctness of the mod-
ified Program A’, etc., but our focus is on the performance-
engineering aspects of the process.

3. Obtaining good measurements

Although this performance-engineering methodology
looks simple, implementing it in practice is hard, even on
dedicated machines, let alone on a shared cloud resource.
The reason is that it is hard to measure performance, and
as Lord Kelvin purportedly said, “If you cannot measure it,
you cannot improve it.” To obtain reliable measurements,
sources of variability and bias must be controlled. The ma-
chine must be quiet with unnecessary daemons shut down.
The impact of interrupts must be minimized, for example, by
handling interrupts on a different processing core from the
cores running the application under study. Threads must be
placed on cores carefully to minimize variability due to hard-
ware features, such as NUMA and hyperthreading. Features
such as Turbo Boost and DVFS, which change the processor
clock frequency depending on compute load and tempera-
ture, must be controlled. The programmer must be careful
in the way the application is compiled and linked.

On a dedicated owned machine, these problems can be
overcome, but it takes an experienced performance engineer
to do so. On the surface, the cloud would seem to offer a
nice opportunity in this space. Cloud providers could of-
fer measurement machine instances in which exogenous
variability due to features such as Turbo Boost and DVFS
is controlled. Open-source measurement snapshots could
be developed that control endogenous variability by shutting
down all unnecessary daemons, executing applications on
particular cores by default, etc.

Solving these issues is not hard technically. Our studies of
virtual-machine environments on dedicated machines show
that reliable performance numbers can be obtained with care
to control exogenous and endogenous sources of variability.
On the cloud, many sources of exogenous variability can be
eliminated by simply using whole-machine instances. But
controlling exogenous sources of variability that require ac-
cess to the machine’s BIOS or hypervisor cannot be done
without the cloud provider’s cooperation. Cloud providers
should offer measurement machine instances that make it
easy to measure the performance of compute-intensive sci-
entific applications.

4. Autotuning

A side benefit of enabling tuning on the cloud is that the
cloud now becomes a more reliable medium in which to do
autotuning [2,6] — optimizing the performance of a pro-
gram by searching a space of program parameters for the

optimal settings of those parameters. Our experiments with
dedicated machines indicate that the quality of autotuning
(i.e., the performance of the autotuned application) can be
significantly enhanced with attention to accurate measure-
ments. It should be no wonder that sloppy measurements
produce suboptimal outcomes.

5. Simulation

A possible alternative to taking exact measurements is to
simulate the system. Unfortunately, modern multicores are
sufficiently complicated that accurate simulation can incur
orders-of-magnitude slowdown in the execution of the appli-
cation. Machine simulations can be useful tools for under-
standing performance bottlenecks, however. For example,
cache simulators can show when memory bottlenecks might
cause a slowdown in application performance, but they are
generally useless for comparing the runtimes of two pro-
grams, because memory bandwidth is not the only contribu-
tor to application performance.

6. Conclusion

Performance engineering will become even more impor-
tant after Moore’s Law [5] ends. Moore’s Law is the techno-
logical trend of shrinking semiconductor-device sizes which,
for half a century, has approximately doubled the number of
transistors on semiconductor chips every two years. Due to
fundamental physics and the economics of silicon fabrica-
tion, semiconductor devices cannot continue to be shrunk
forever. Respected technologists [4] predict significant at-
tenuation of the trend by the end of the decade. After the
demise of Moore’s Law, one of the few ways to enhance the
cost-effectiveness of computing will be to make legacy code
more efficient and new code efficient to begin with. As the
demand for more efficient code rises, cloud providers will
have a competitive advantage if they offer systems in which
careful measurements.
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