Towards Practical Secure Cloud Health Monitoring

Muthuramakrishnan Venkitasubramaniam T, Tolga Soyata*

*Dept. of Electrical and Computer Engineering

University of Rochester

Abstract—The Patient Protection and Affordable Care Act
is one of the most significant government efforts to generalize
the use of electronic medical records (EMRs) and to incentivize
the development of innovative technologies that can help curb
the rising US healthcare costs. Moving datacenters to the cloud
is a clear mechanism for healthcare providers to reduce costs.
However, privacy of personal medical data is a major concern
when processing data off-site. Fully Homomorphic Encryption
(FHE), discovered by Gentry in 2009 allows for data to be
stored and computed in encrypted form. Given the tremendous
potential FHE has to revolutionize cloud computing, a lot of the
recent works have focussed on implementing these encryption
schemes. However, most implementations are too slow for most
applications. We present a technique that demonstrates feasibility
of using state-of-the-art FHE implementations for concrete appli-
cations. Through simulations, we demonstrate that our method
yields about 20x speedup in a sample application. This is a
significant step towards practical FHE-based medical remote
monitoring.

I. INTRODUCTION

Cloud computing could be a viable option to reduce costs
associated with EMRs by outsourcing the storage of medical
data to cloud operators, such as Amazon Web Services,
GoogleCloud, and Microsoft Azure. However, even if the hos-
pitals are willing to embrace cloud computing, cloud operators
are reluctant to sign a Business Associate Agreement (BAA)
and accept to store Personal Health Information (PHI) due to
the high risks associated with a potential breach of data ($50K
to $1.5M penalties depending on the type of the violation).

In a breakthrough result, Gentry [1] presented a novel
technique that allows encrypted data to be processed securely:
fully homomorphic encryption (FHE). Unfortunately, current
FHE schemes are computationally expensive while requiring
huge storage even for a relatively small amount of raw data.
In [?], we show with an open source implementation of a
FHE scheme called HElib [2], we demonstrate that it may
be practical for some basic applications. One such application
involves streaming sensor data to the cloud and comparing the
values to a threshold.

II. CASE STUDY : LONG TERM HEALTH MONITORING

As a case study, we chose to implement an ECG-oriented
application: detecting prolongation of the QT interval. Pro-
longation of the QT interval (shown in Figure 1) may be
genetic (Long QT syndrome, LQTS) or drug-induced. Moni-
toring is typically conducted in the hospital, but this gives an
incomplete picture of the patient’s QT interval since they are
not participating in their normal daily activities. This makes
remote Q7. surveillance of an ambulatory patient a good
candidate application for our proof-of-concept.

TDept. of Computer Science
University of Rochester

In our case study we upload FHE-encrypted ECG data
in an online manner from a patient to the cloud, and have
the cloud compute over the encrypted data and transmit the
result to the patient’s doctor in real-time. In our particular
case-study, we assume that the cloud receives two values,
QT and RR, pictured in Figure 1 for every heart-beat cycle.
These values will be extracted from the ECG monitor' and
transmitted from the patient’s end in encrypted form. The
patient’s QT is then computed (homomorphically, in the
cloud) as QT, = W (Fridericia’s formula [3]). The

still-encrypted QTc values then need to be compared to a
threshold value, such as 500ms. The function we are interested
in, then, is:

f(QT,RR) = [QT? > (500ms)?(RR/sec)], (1)

III. A NEwW APPROACH

Since FHE allows for computing over encrypted data,
the obvious approach is to send encryptions of the data
elements to the cloud, homomorphically evaluate f from
Equation 1 on each element in the incoming stream, and
then compute the “OR” of the result of the computations
(again, homomorphically). As we show in our experimental
results, this solution is computationally costly. This is because
homomorphic operations are inherently incredibly expensive.
In fact, the known FHE schemes have a different cost model
where performing a multiplication operation homomorphically
is typically far more expensive than an addition operation
and the cost of multiplication grows significantly with the
multiplication-depth (i.e., a cascaded set of multiplications).

A simple calculation will show that in order to do this
following the naive approach we need a depth d = DEPTHy +
logn to process n data elements, where DEPTH; is the

!Using standard digital-signal processing methods

RR interval

QT interval

Fig. 1. Normal sinus rhythm. The QT interval represents the time for the
ventricular recovery phase of the heart. Prolongation of QT (relative to the
RR interval) indicates an increased risk for life-threatening events.

multiplication-depth of f. The main contribution of our ap-
proach is to show how we can significantly improve the com-
putational efficiency by relying on an alternative representation
of the computation that will significantly reduce the depth of
the computation. In addition, our method will be inherently
parallelizable and have small input locality.

Our high-level idea is to choose a suitable computational
model that is reasonably powerful and then rely on existing
HE schemes or develop new schemes that allow for both (1)
homomorphic computation of all functions in the chosen com-
putational model and (2) aggregation of the results collected
over a period of time. Towards this we first represent the
function f as a branching program instead of a circuit. A
branching program is a directed acyclic graph with a special
start node s and final node ¢ where each edge is labeled with
either an input bit or its negation. The result of the computation
is true if there is a path from the start to the final node
traversing only edges for which the assignment sets the value
on the edge true.

Next, we show how to use an FHE scheme to evalu-
ate a branching program and aggregate the results of the
computation over streaming data. Using elementary linear
algebra we can show that evaluating a branching program is
equivalent to evaluating the determinant of a particular matrix.
More precisely, the detereminant will be f(z) for the matrix
corresponding to input x. Given the matrix representation
of two inputs x; and xo, computing the “AND” of f(x1)
and f(z2) now reduces to simply multiplying the matrices
corresponding to the inputs, since det(AB) = det(A)det(B).

Our overall approach is to use the inputs Q7" and RR in
encrypted to form to first generate elements of the matrix for
each element homomorphically and then multiply the matrices
corresponding to all elements in the data stream. The main
benefit of our approach is due to the very low multiplicative
depth of our computation. In fact, the depth of our computation
will be logn giving a saving of DEPTH

IV. PERFORMANCE EVALUATION

To evaluate our approach we compare the running times
of the naive approach to our approach using the open-source
implementation HELib [2] of the FHE scheme due Brakerski,
Gentry and Vaikuntanathan [4]. Since the HELIib library is not
thread-safe, to compare the performance of the two approaches
we must simulate the computation to estimate the time taken
on parallel machines. To accomplish this, we first perform real
benchmarks of each individual operation on a single thread,
and then use that time to estimate the computational costs
for our parallel experiments. In our estimate we assume that
each parallel machine has instantaneous access to the input
encryptions and results of computations from other machines.
(In essence, we ignore the data transfer and sharing costs.)We
ran our simulation for processing 10 and 10240 samples. Both
approaches improved with the number of processors. However,
the matrix approach was consistently better than the naive
approach by a factor of 20. The main reason for this is that
the cost of computation increases significantly with the depth

of the computation and the depth of the naive approach is
significantly higher than that of the matrix approach. For a
more detailed discussion of our results see [?]

V. OPTIMIZATIONS AND SCALABILITY

Our proposed approach works for any boolean function that
can be represented as a branching program. The size of the
matrix corresponds to the size of the graph. For the equation
in our case study, we construct a branching program of size
~ 600.

We observe that if the matrix representing the function
is sparse, then we can efficiently encode the elements of
the matrix that will facilitate multiplication. In particular,
a band matrix with a small band can be efficiently mul-
tiplied using homomorphic operations. A band matrix has
non-zero entries only in a band around the main diagonal.
Furthermore, multiplying two band matrices results in a band
matrix with a slightly larger band. An advantage of using
branching programs is that there is notion of width for a
branching program which directly translates to the width of
the corresponding band matrix. Furthermore, a fundamental
theorem due to Barrington [5], from complexity theory, states
that the complexity of functions computable by small width
branching programs is exactly the set of circuits with small
depth (referred to in the literature as NC'). The branching
program we construct for our case study has width 10, and
the corresponding band matrix has width 9.

VI. CONCLUSIONS AND FUTURE WORK

In theory, FHE is a solution, but in practice it is too slow.
We have presented a technique that improves computational
efficiency and scalability of FHE for a large set off applica-
tions, resulting in 20x speedup for a representative application.
Our work shows that for applications where we would like
to perform some sort of detection on a stream of encrypted
data can be performed efficiently by formulating the detection
algorithm via a branching programs. Furthermore, it suggests
that to achieve scalability the right cloud architecture would
be one that facilitates generation of encrypted matrices from
encrypted inputs and multiplication of encrypted matrices
using homomorphic operations.

REFERENCES

[1] Craig Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
2009, pp. 169-178.

[2] Shai Halevi and Victor Shoup, “Algorithms in helib,” TACR Cryptology
ePrint Archive, vol. 2014, pp. 106, 2014.

[3] Louis Sigurd Fridericia, “Die Systolendauer im Elektrokardiogramm bei
normalen Menschen und bei Herzkranken,” Acta Medica Scandinavica,
vol. 53, pp. 469-486, 1920.

[4] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, “(leveled)
fully homomorphic encryption without bootstrapping,” in ITCS, 2012,
pp. 309-325.

[5] David A. Mix Barrington, “Bounded-width polynomial-size branching
programs recognize exactly those languages in nc'” J. Comput. Syst.
Sci., vol. 38, no. 1, pp. 150-164, 1989.

