
A Reliablity Analysis Framework for Cloud Storage Systems

Mai Zheng† Joseph Tucek‡ Feng Qin † Mark Lillibridge‡

† The Ohio State University ‡ HP Labs

1 Motivation

People have high expectations of data storage. It is frus-

trating when your browser crashes, but it is unaccept-

able when the payroll database loses your paycheck, and

heartbreaking when a cloud storage service loses your

irreplaceable family photos. Thus, we need highly reli-

able storage systems that can protect data no matter what

happens.

However, such high standard of reliability is difficult

to achieve. Besides normal cases, storage systems must

be able to handle many adverse events, such as system

crashes, disk failures, power outages, and so on. So

the reliability guarantees usually comes at a cost in high

complexity, especially when high performance must be

achieved as well. This is particularly true for cloud

storage systems (e.g, distributed file systems, distributed

databases, cloud storage services, etc.), which must be

built on top of the already-complicated storage stack on

each individual machine (e.g., block devices, logical vol-

ume manager, local file systems, etc.) and must consider

various failures as the norm rather than the exception [2].

As a result, today’s storage systems become more and

more difficult to test and to reason about.

2 Our Preliminary Studies

As a first step towards building highly reliable storage

systems, we have built two reliability analysis frame-

works for storage systems on a single machine [3, 4].

The first framework [4] focuses on flash-based solid-

state disks (SSDs). We evaluate fifteen commodity SSDs

from five different vendors using more than three thou-

sand fault injection cycles in total. Our experimental

results reveal that thirteen out of the fifteen tested SSD

devices exhibit surprising failure behaviors under power

faults, including bit corruption, shorn writes, unserial-

izable writes, metadata corruption, and total device fail-

ure. The second framework [3] focuses on databases run-

ning on a single machine. We design special workloads

to check the atomicity, consistency, isolation, and dura-

bility (ACID) properties under an idealized fault model.

The framework includes a record/replay subsystem to al-

low the controlled injection of simulated faults, a rank-

ing algorithm to prioritize where to fault based on pat-

terns collected from traces, and a multi-layer tracer to

diagnose root causes. Using our framework, we study

8 widely-used databases, ranging from open-source key-

value stores to high-end commercial OLTP servers. Sur-

prisingly, all 8 databases exhibit erroneous behavior.

The issues exposed by our frameworks is a wake-up

call. Even for storage systems on a single machine,

the traditional testing methodology may not be enough.

Instead, we need carefully-designed workloads as well

as intelligent fault injection techniques. Moreover, we

find that there are gaps of understanding or assumptions

among different communities (e.g., file systems develop-

ers and database developers) in terms of the behavior of

the interface between two different layers in the storage

stack. The situation will likely be worse if more storage

layers or more machines are involved.

3 Our Proposed Research on CloudLab

Analyzing the storage systems on a single machine, al-

though important, is far from enough. In this big data

era, many data are now stored and managed in the cloud.

If even the relatively matured single-machine storage

systems can exhibit unexpected or erroneous behaviors,

it becomes important as well as emergent that we per-

form similar in-depth analysis on cloud storage systems,

which add more layers on top of the local storage stack

and are responsible for protecting much more data.

The basic idea of the distributed reliability analysis

framework is simple: workloads and checking logic to

stress the storage systems and check consistency and in-

tegrity; fault-injection subsystem to simulate certain fail-

ure behavior; record-and-replay subsystem to allow effi-

1



cient testing and reproduction; tracing subsystem to help

diagnosis. However, there are multiple challenges.

The first challenge of building such an analysis frame-

work is to setup a cloud storage system that we have

full control of. To this end, we need an infrastructure

like CloudLab [1], which can provide sliced hardware re-

sources and allows us to build a distributed systems with

storage software that we are interested in.

One feature of CloudLab, which is “control and visi-

bility all the way to the bare metal”, is extremely impor-

tant to our analysis framework. To achieve high-fidelity

andmake the analysis framework transparent to the cloud

storage systems under testing, we need to carefully de-

sign where to inject faults. We will likely consider soft-

ware layers below the systems under testing. Thus, full

access to the low-layer software is necessary.

Moreover, to fully understand the potential failures ex-

posed to the user by the cloud storage systems, we will

study the failure propagations among different layers.

This requires monitoring the interactions among differ-

ent layers and gathering corresponding traces, from the

block devices in the local storage stack to the distributed

storage software. Also, to make the analysis more com-

prehensive, we will tune the parameters of each individ-

ual layer in the storage stack. For example, we will con-

sider the impact of changing the journaling mode of the

local file system on the behavior of a higher-level dis-

tributed databases. All of these require the capability of

accessing and modifying each and every software layer

in the cloud storage systems.

The cloud environment introduces many other chal-

lenges for the analysis. For example, synchronization of

events from different machines, which is necessary for

combining different traces, is a new issue to the analysis

framework. To solve these challenges, our framework

will likely incorporate the idea of some classic solutions

to these classic problems in distributed systems. It would

be helpful if infrastructures like CloudLab could also

provide some functionalities commonly used in the dis-

tributed environment (e.g., synchronization primitives)

for building high-level software framework.

References

[1] CloudLab. http://www.cloudlab.us.

[2] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google

file system. In Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles (New York, NY, USA, 2003), SOSP

’03, ACM, pp. 29–43.

[3] ZHENG, M., TUCEK, J., HUANG, D., QIN, F., LILLIBRIDGE,

M., YANG, E. S., ZHAO, B. W., AND SINGH, S. Torturing

databases for fun and profit. In 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 14) (Broomfield,

CO, Oct. 2014), USENIX Association, pp. 449–464.

[4] ZHENG, M., TUCEK, J., QIN, F., AND LILLIBRIDGE, M. Under-

standing the robustness of SSDs under power fault. In Proceedings

of the 11th USENIX Conference on File and Storage Technologies

(FAST’13) (2013).

2

http://www.cloudlab.us

	Motivation
	Our Preliminary Studies
	Our Proposed Research on CloudLab

